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Antinutritional Factors Related to
Proteins and Amino Acids

IrvIN E. LIENER*
University of Minnesota, St. Paul, Minnesota

1. PROTEASE INHIBITORS
A. Introduction

Among the many factors that have been implicated as having an adverse
effect on the nutritional value of plant proteins is a class of proteins that
has the ability to inhibit the proteolytic activity of proteases of diverse
origin. Because of the important role soybeans play as a dietary ingredient
for animals as well as humans, the protease inhibitor found in this legume
has received the most attention since it was first reported by Read and Haas
in 1938 (1). The protein fraction responsible for the inhibition of trypsin
was partially purified by Bowman (2) and Ham and Sandstedt (3) in 1944
and subsequently isolated in crystalline form by Kunitz one year later (4).
The existence of a heat-labile inhibitor of trypsin seemed to offer a reason-
able explanation for the observation made many years before by Osborne
and Mendel that heat treatment improved the nutritive value of soybean
protein (5).

*Retired
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The realization that protease inhibitors might be of nutritional signifi-
cance in soybeans stimulated an intensive search for similar factors in other
legumes that provide an important source of protein in the diets of many
segments of the world’s population. Table 1 provides a partial list of the
many plants that are known to contain protease inhibitors as well as their
specificity with respect to the proteases they inhibit.

B. Biochemical Properties

The protease inhibitors that have been isolated from soybeans and other
legumes fall biochemically into two main categories: those that have a
molecular weight of 20,000 to 25,000 with relatively few disulfide bonds
and a specificity directed primarily toward trypsin, and those that have a
molecular weight of only 6000 to 10,000 with a high proportion of cystine
residues and are capable of inhibiting chymotrypsin as well as trypsin at
independent binding sites. The most thoroughly characterized examples of
these two classes of inhibitors are the so-called Kunitz and Bowman-Birk
inhibitors isolated from the soybean.

The complete amino acid sequence of the Kunitz inhibitor is shown in
Fig. 1. It consists of 181 amino acid residues with the reactive site (the site
directly involved in its interaction with trypsin) located at residues Arg 63
and Ile 64. This molecule combines with trypsin in a stoichiometric fashion,
that is, one molecule of the inhibitor inactivates one molecule of trypsin.
The complex that forms is analogous to an enzyme-substrate complex that,
unlike the usual enzyme-substrate complex that readily dissociates, is
bound tightly with a Ki of 107'° M (6). X-ray crystallography has given a
closer insight into the detailed nature of the enzyme-inhibitor complex (Fig.
2); the molecular forces involved in this interaction have been reviewed by
Laskowski and Kato (7).

Five closely related Bowman-Birk type of inhibitors have been iso-
lated and characterized from soybeans; they are referred to as PI-I through
PI-V (8). The amino acid sequence of PI-I is shown in Fig. 3. A unique
feature of this molecule is that it has two independent binding sites: a
trypsin-reactive site (Lys 16-Ser 17) and a chymotrypsin-reactive site (Leu
44-Ser 45). In contrast to the Kunitz inhibitor, the Bowman-Birk inhibitors
are very rich in disulfide bonds, possessing seven. This feature is responsible
for the very tight, compact three-dimensional structure revealed by X-ray
crystallography of PI-II, a variant of the Bowman-Birk inhibitor that has
65 amino acid residues (9), and by nuclear magnetic resonance spectroscopy
of PI-1, the classical variant that is comprised of 71 amino acids (10). The
sequences of amino acids surrounding these two reactive sites are remark-
ably similar to each other, and a high degree of homology has been found
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TasLE 1 Distribution of Protease Inhibitors Present in Legumes

Proteases
Botanical name Common name inhibited
Arachis hypogaea Peanut, groundnut T,C,PLK
Cajanus cajan Pigeon pea, red gram T
Canavalia ensiformis Jack bean, sword bean T,C,8
Chamacrista fasiculata  Partridge pea T
Cicer arietinum Chick pea, Bengal gram, gar- T,C
banzo
Clittoria ternatea Butterfly pea T,C,S
Cyamopsis tetragono- Cluster bean T,C,S
loba
Dolichos biflorus Horse gram T
Dolichos iablab Hyacinth bean, field bean, Haku- T, C, Th
benzu bean
Faba vulgaris Double bean T
Glycine max Soybean T.C
Lathyrus odoratus Sweet pea T
Lathyrus sativus Chickling vetch T,C
Lens esculenta (culi- Lentil T
narls)
Lupinus albus Lupine T
Mucana desringianum Florida velvet bean T
Phaseolus aconitifolius Moth bean T
Phaseolus anguiaris Adzuki bean T,C
Phaseolus aureus Mung bean, green gram T, endopeptidase
Phaseolus coccineus Scarlet runner bean T,C
Phaseolus lunatus Lima bean, butter bean T.C
Phaseolus mungo (radi-  Black gram T.C,S
atus)
Phaseolus vulgaris Navy bean, kidney bean, pinto T,C,ES
bean, French bean, white
bean, wax bean, haricot bean,
garden bean
Pisum sativum Field bean, garden pea T
Psophocarpus tetragon-  Winged bean, Gao bean T
olobus
Stizobolium deeringi- Velvet bean T
anum
Vicia faba Broad bean, field bean, faba T, C, Th, Pr, Pa
bean
Vigna unguiculata (si- Cowpea, black-eyed pea, South- T,C
nensis) ern pea, serido pea
Voandzeia subterranca  Bambara bean T

Source: From Ref. 6

C, chymotrypsin; E, elastase; K, kallikrein; Pa, papain; Pl, plasmin; Pr, pronase; S, subti-

lisin; T, trypsin; Th, thrombin

Kopie von subito e.V., geliefert fir BASF SE (COM02X01133)

263



264 Liener

N COCOOCTOCTDCT 0D CDn

@ OF

6§ HECEOPLEEOIREEOEEE (o ©
& %@@@@@@@@@@@@@@@@)@ o
|u @
Q @m@m@m@,@, wm@«m@@ ©
@ 3 @
() & O @ 1e D
@ © @ Q"
B ® o & 8 S
WD © o (1) &)

'@ @®®® g g

BEEEEE (s

Arg-63/Ile-64
“Reactive Site”

FiGure 1 Amino acid sequence of the Kunitz soybean trypsin inhibitor. (From
T. Koide and T. Ikenaka, Studies on soybean trypsin inhibitors. 3. Amino acid
sequence of the carboxyl region and the complete amino acid sequence of
soybean trypsin inhibitor (Kunitz). Eur. J. Biochem., 32:417, 1973.)

between the Bowman-Birk inhibitor and a number of other low molecular
weight inhibitors that have been isolated from other legumes (Table 2).

C. Nutritional Significance
1. Biological Effects

Not long after soybeans were introduced into the United States, primarily
as a source of oil, Osborne and Mendel made the significant observation
that soybeans had to be heat treated in order to support the growth of rats
(5). With the isolation of a trypsin inhibitor from raw soybeans by Kunitz
(4), it generally was assumed that the beneficial effect of heat treatment
could be attributed to the destruction of this factor that interfered with
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FiIGURE 2 Folding of the polypeptide backbone chain of the Kunitz inhibitor is
shown on the left. Amino acid residues in intimate contact with trypsin are shown
in black. Shown on the right is a model of the Kunitz inhibitor-trypsin complex.
The part representing trypsin is shaded less heavily. (From R. M. Sweet, H. T.
Wright, J. Janin, C. H. Clothis, and D. M. Blow, Crystal structure of the complex
of porcine trypsin and soybean trypsin inhibitor (Kunitz) at 2.6 A, Biochemstry,
13:4212, 1974.)

FIGURE 3 Amino acid sequence of the Bowman-Birk inhibitor. The disulfide
bonds and reactive sites involved in its interaction with trypsin (Lys 16-ser 17)
and chymotrypsin (leu 44—-ser 45) are shown in black. (From S. Odani and T.
Ikenaka, Studies on the soybean trypsin inhibitors. VII. Disulfide bridges in soy-
bean Bowman-Birk proteinase inhibitor, J. Biochem. (Tokyo), 74.697, 1973.)
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Antinutritional Factors Related to Proteins and Amino Acids 267

the digestion of protein in the intestinal tract. Purified fractions from the
soybean, which were rich in antitryptic activity, in fact were capable of
inhibiting the growth of rats (11), chicks (12), and mice (13), an effect that
generally was accompanied by a depression in the digestibility of the protein
in the diet. Furthermore, the feeding to rats of a raw soybean extract from
which the trypsin inhibitors had been removed by affinity chromatography
showed improved growth performance compared to controls from which
the trypsin inhibitors had not been removed (14). Despite these observa-
tions, it remained unclear why preparations of trypsin inhibitor were capa-
ble of inhibiting growth even when incorporated into diets containing predi-
gested protein or free amino acids (15). Such experiments obviously ruled
out an inhibition of proteolysis as the sole factor responsible for growth
inhibition and thus served to focus attention on some alternate mode of
action of the trypsin inhibitors.

Perhaps the most significant observation that ultimately has led to a
better understanding of the mode of action of the soybean inhibitors was
the finding that raw soybeans or trypsin inhibitor itself could cause hyper-
trophy and hyperplasia of the pancreas (16-18). This has led to the sugges-
tion that the growth depression caused by trypsin inhibitors might be the
consequence of an endogenous loss of amino acids secreted by a hyperactive
pancreas (19,20). Since pancreatic enzymes such as trypsin and chymotryp-
sin are particularly rich in sulfur-containing amino acids, pancreatic hyper-
trophy and/or hyperplasia diverts these amino acids from the synthesis of
body tissue protein to the synthesis of these enzymes. This loss in sulfur-
containing amino acids exacerbates an already critical situation with respect
to soybean protein, which inherently is deficient in these amino acids.

Related to the cellular proliferation of pancreatic tissue evoked by
trypsin inhibitors is the observation that raw soy flour potentiates the car-
cinogenic effect of azaserine (21) and di(2-hydroxypropyl) nitrosamine (22)
on the pancreas of the rat. Even more significant is the fact that the long-
term (60 or more weeks) feeding of raw soy flour alone causes the appear-
ance of adenomatous nodules on the pancreas (23). This carcinogenic effect
was correlated positively with the level of trypsin inhibitor in the diet when
various levels of raw soy flour were incorporated into the diet (24). Similar
studies with the mouse (25) and hamster (26), however, revealed no evi-
dence of pancreatic lesions with the long-term feeding of raw soy flour.

2. Mode of Action

Many studies have been conducted in an attempt to elucidate the mecha-
nism by which trypsin inhibitors induce pancreatic hypertrophy. Green and
Lyman were the first to postulate that pancreatic secretion is controlled by
negative-feedback inhibition that depends on the level of trypsin present at
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any given time in the small intestine (27). When the level of this enzyme falls
below a certain critical threshold, the pancreas responds in a compensatory
fashion by producing more enzyme. Suppression of this negative-feedback
mechanism occurs if the trypsin becomes complexed with the inhibitor.

It is believed that the mediating agent between the trypsin and the
pancreas is the hormone cholecystokinin (CCK), which is released from
the intestinal mucosa when the level of trypsin becomes depleted. This is
supported by the observation that elevated levels of plasma CCK accompa-
nied the feeding of raw soy flour to rats (28). These relationships are shown
in Fig. 4. Negative-feedback control has been found to be operative in most
species of animals, with the exception of the dog (29). In the cases of the
pig and calf, however, the existence of the negative-feedback mechanism is
not accompanied by pancreatic hypertrophy.

Evidence that such a mechanism occurs in humans comes from experi-
ments involving the infusion of the Bowman-Birk inhibitor into the duode-
num that evoked an increase in the level of trypsin, chymotrypsin, and
elastase into the small intestine (30). The feeding of a meal containing raw
soy flour to human subjects also led to an increase in plasma CCK (31).

Trypsinogen -

[pancreas) \ [mucosa]

Dietary Trypsin

Protein \Qtestme]

Proteclysis Trypsin-TI

FIGURE 4 Mode of action of soybean trypsin inhibitors on pancreas (CCK =
cholecystokinin). (From R. L. Anderson, J. J. Rackis, and W. H. Tallent, Biologi-
cally active substances in soy products. In Soy Protein and Human Nutrition,
edited by H. L. Wilcke, D. T. Hopkins, and D. H. Waggle, Academic Press, New
York, 1979, p. 209.)
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Ficure 5 Role of monitor peptide in negative-feedback control (T! = trypsin
inhibitor; CCK = cholecystokinin). (Based on studies from Ref. 32.)

Until quite recently, it has not been clear how trypsin manages to
suppress the secretion of CCK or, conversely, how its inactivation by tryp-
sin causes an increase in CCK production. A trypsin-sensitive peptide
(“monitor peptide”) with 61 amino acids has been isolated from rat’s pan-
creatic juice that acts as a signal for the release of CCK from the intestinal
mucosa (32). This peptide is inactivated by trypsin, thus causing a suppres-
sion of CCK release; but, when trypsin is complexed with the inhibitor, this
peptide is free to signal the release of CCK, which in turn causes pancreatic
hypertrophy and/or hyperplasia with a concomitant increase in the secre-
tion of enzymes. These relationships are shown in the diagram of Fig. 5.

3. Nutritional Significance in Humans

Since trypsin inhibitors are present in a wide variety of foods commonly
consumed by humans, including not only legumes but also cereal grains,
tubers, fruits, vegetables, nuts, and eggs (33,34), the question may be raised
as to whether the presence of trypsin inhibitors in the diet poses any risk
to human health. There is a documented instance in which inadequately
processed soy protein used as an extender for tuna fish caused an outbreak
of gastrointestinal illness (35). Although this does not prove that trypsin
inhibitors were responsible for this adverse reaction, it is interesting to note
that there is at least one case report of an allergy to the Kunitz trypsin
inhibitor (36).
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D. Detoxification
1. Effect of Heat Treatment

Because of its economic importance, the soybean has received the most
attention with respect to the effect of heat treatment on trypsin-inhibitor
activity and the consequences of such treatment on the nutritional quality
of the protein. In general, the extent to which the trypsin-inhibitory activity
is destroyed by heating is a function of the temperature, duration of heat-
ing, particle size, and moisture conditions—variables that are controlled
carefully in the commercial processing of soybeans in order to insure a
product with maximum nutritional value. An example, using a rat assay,
of the relationship that exists between the destruction of the trypsin inhibi-
tor by heat treatment and the concomitant improvement in the nutritional
quality of the protein is illustrated in Fig. 6.

Most commercially available soybean products intended for human
consumption (e.g., tofu, soy milk, soy protein isolates and concentrates,
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FicuRe 6 Effect of heat treatment on the trypsin-inhibitory activity (TI) expressed
as trypsin inhibitor units (TIU) and nutritive value of soybean meal as measured
by the protsin efficiency ratio (PER). (From J. J. Rackis, Biological and physiclog-
ical factors in soybeans, J. Am. Oil Chem. Soc., 51:161A, 1974.)
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and textured meat analogues) have received sufficient heat treatment so
that they contain less than 10% of the trypsin-inhibitor activity originally
present in the beans or raw soy flour from which they were derived (37).
This a level of activity that is believed to be well below the threshold level
necessary to cause pancreatic hypertrophy in rats (38,39).

Although live steam treatment of soybeans (a process referred to as
toasting) is the most commonly used method for inactivating the trypsin
inhibitor, other modes of heat treatment or processing have proved equally
effective. These include boiling soybeans in water (40), dry roasting (41),
dielectric heating (42), microwave irradiation (43), extrusion cooking (44),
gamma irradiation (45), and infrared radiation (46). The direct infusion of
steam into soy milk also inactivates the trypsin inhibitor (47). Because of
the compact structure of the Bowman-Birk inhibitor and its stability to-
ward heat in its isolated form (48), it generally has been assumed that the
residual trypsin-inhibitor activity found in processed soybean products is
due to the Bowman-Birk inhibitor. However, using analytical techniques
that serve to differentiate between the Kunitz and Bowman-Birk inhibitors,
it has been found the Bowman-Birk inhibitor is destroyed more readily
than the Kunitz inhibitor in its natural milieu (e.g., soy flour) (49). The
reason for this anomalous situation is not clear, but may be the result of
the interaction of the many disulfide groups of the Bowman-Birk inhibitor
with other cysteine-rich components comprising the soybean matrix, reac-
tions that may be accelerated by heat.

The popular use of legumes as a staple food item in many parts of the
world has prompted numerous studies on the effect of different forms of
heat treatment on the inactivation of the trypsin inhibitors present in these
beans. The legumes that have received the most attention in this regard
include the navy and kidney beans (Phaseolus vulgaris), broad beans (Vicia
Jfaba), peanuts (Arachis hypogaea), lima beans (Phaseolus lunatus), cow-
peas (Vigna sinensis or unguiculata), winged bean (Psophocarpus tetragon-
olobus), moth bean (Vigna aconitifolium), chick pea (Cicer arietinum), and
pigeon pea (Cajanus cajan). In general, the effect of heat treatment on
most other legumes follows the same general pattern as that observed with
the soybean (see Ref. 6).

2. Germination

Although the germination of soybeans has been reported by some investiga-
tors to result in an improvement in the nutritive value of the protein (50,51),
the relationship of this to changes in trypsin-inhibitor activity is obscure
(52). Changes in net trypsin-inhibitor activity are relatively slight (53-55),
although the relative distribution of the Kunitz and Bowman-Birk inhibi-
tors becomes altered. The content of the Bowman-Birk inhibitor in the
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cotyledons of soybean gradually disappeared and, by the 13th day, only
the Kunitz inhibitor could be detected (56). In this case new forms of
the inhibitor were observed that presumably arose as the result of limited
proteolysis during germination (57,58).

Gupta (59) and Savelkoul et al. (60) have documented the changes
that take place during the germination of many different legume seeds. No
consistent pattern could be discerned; some legumes showed little or no
change, while others displayed a decrease in trypsin-inhibitor activity. In
general, however, there appears to be little or no correlation between
changes in trypsin-inhibitor activity and the nutritive value of the germi-
nated seed.

3. Traditional Modes of Preparation

Tofu is comprised mainly of protein that has been precipitated from a
hot-water extract of soybeans with calcium-magnesium salts. Soy milk is
simply a hot-water extract of whole soybeans that may have undergone
clarification. Since the preparation of both tofu and soy milk involves the
cooking or steaming of soybeans prior to extraction with water, such prod-
ucts are generally quite low in trypsin-inhibitor activity (61). Fermented
preparations of soybeans and such other legumes as tempeh, miso, and
natto are virtually devoid of trypsin-inhibitor activity since the beans are
subjected to boiling prior to fermentation (62). Fermented legumes have
been shown to have superior nutritive value compared to their unfermented
counterparts (63-65) but, since both types of preparations were derived
from heated beans, this improvement probably has little to do with the
trypsin inhibitor.

In only a few instances has an attempt been made to determine the
effect of fermentation in the absence of heat. Varying degrees in the reduc-
tion of trypsin-inhibitory activity by natural fermentation in the absence of
heat treatment have been reported for chick peas (66,67) and cowpeas (67).
In the absence of further studies, it can only be assumed that such decreases
in trypsin-inhibitory activity were due to proteolytic attack by enzymes
secreted by the microorganisms involved in the fermentation.

4, Genetic Studies

The screening of 56 genotypes of grain-type soybean and 17 vegetable-type
soybean collections has revealed over a 10-fold variation in trypsin-
inhibitor activity (68). Kakade et al. also noticed a wide variation in the
trypsin-inhibitor activity of over 100 different varieties and strains of soy-
beans, but no correlation was obtained between trypsin-inhibitor content
and the nutritional value of the protein as measured in rats (69). In a
continuing search for soybean genotypes that might be devoid of trypsin
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inhibitors, 2944 accessions of soybean germ plasm were screened and only
two accessions that lacked the Kunitz inhibitor but still retained about 50%
trypsin-inhibitor activity were discovered (70,71), presumably due to the
presence of the Bowman-Birk inhibitor (72). Although feeding studies with
rats, chicks, and swine have indicated some improvement in the nutritional
value of the protein, the strain with only 50% trypsin inhibitor activity still
was inferior to that of heat-processed soybean meal (73-75).

E. Physiological Role in Plants

The physiological role of the protease inhibitors in plants sometimes has
been presumed to be regulation of protein catabolism during germination
or the degradation of storage protein during seed maturation, Attractive as
this hypothesis may seem, there is very little experimental support for this
concept. For example, the protease inhibitors isolated from specific plants in
fact are incapable of inhibiting the endogenous proteases of the same plant
(76,77). In Section 1.D.2, reference was made to the fact that a diminution in
protease-inhibitor activity is not observed consistently during germination.

It is now generally accepted that the protease inhibitors play a key
role in the defense mechanism that plants have evolved against insects (78—
80) and microbial pathogens (81). Studies of the effect of protease inhibi-
tors artificially introduced into defined diets have shown them to be detri-
mental to the growth and development of insects from a wide variety of
genera (82-85). The mechanism for protection against insects appears to be
very similar to what has been observed in animals, namely, the ability of
these inhibitors to interfere with the digestive enzymes in the gut of these
insects (86-88).

The genes from a number of protease inhibitors from different plants,
including soybeans (89-92), potatoes (93,94), tomatoes (95), rice (96), and
barley (97) have been cloned, and concerted efforts are being made to
transfer these genes into other plants in order to confer resistance to insect
attack. Two examples illustrating the successful application of this ap-
proach may be cited. The cowpea (Vigna unguiculata) trypsin inhibitor,
which is a variant of the Bowman-Birk inhibitor, has been introduced into
Agrobacterium tumifasciens and expressed in the tobacco plant (98). These
genetically altered tobacco plants had enhanced resistance to the tobacco
budworm (98). The introduction of the gene of potato inhibitor II, an
inhibitor of trypsin and chymotrypsin, into tobacco plants using the cauli-
flower mosaic virus as the vector severely retarded the growth of the larvae
of the tobacco horn worm (99).

The development of transgenic plants with protease-inhibitor activity
offers exciting possibilities in agriculture. For example, advantage could be
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taken of the differences in the specificity of various protease inhibitors so
as to provide protection against a wide variety of insects, depending on the
type of digestive enzymes that are present in their gut. It also might be
possible to alter the specificity of a given protease inhibitor by site-directed
mutagenesis of the amino acids comprising its reactive site. In the final
analysis, a combination of several different inhibitors may be required to
achieve complete protection against insect predation,

F. Analytical Techniques

Rackis et al. have critically evaluated the most commonly employed tech-
niques for assaying for protease-inhibitor activity that generally involve a
measurement of the degree to which the activity of a pure sample of a given
protease, usually bovine trypsin or chymotrypsin, on casein or a synthetic
substrate is inhibited by the test sample (100). The limitation to this type of
assay is the fact that it does not serve to distinguish among the different
molecular species of inhibitors that might have the same specificity toward
a given protease. Furthermore, this type of assay fails to reveal to what
extent such nonprotein components as phytates and tannins might contrib-
ute to the observed protease-inhibitor activity. These problems can be cir-
cumvented by using monoclonal antibodies that distinguish between the
Kunitz and Bowman-Birk inhibitors in soybeans (49,101-103), or by a
procedure that involves the specific absorption of trypsin inhibitors by
affinity chromatography on immobilized trypsin (104,105).

Il. AMYLASE INHIBITORS
A. Nutritional Significance

Protein inhibitors of alpha-amylase are distributed widely throughout the
plant kingdom and have been purified from wheat, barley, rye, corn, millet,
kidney bean, colocasia, and yam. Many of these have been studied exten-
sively with respect to their structure, physicochemical properties, and mech-
anism of action (see Ref. 106 for details). It is questionable, however,
whether these amylase inhibitors really should be considered as true antinu-
tritional factors since biological studies have not been very conclusive re-
garding their adverse nutritional effects. For example, the alpha-amylase
inhibitor isolated from the kidney bean (Phaseolus vulgaris) did not affect
the growth rate of rats, nor did it affect the availability of energy from
dietary starch (107). Although the growth of rats (108) and chickens (109)
was not retarded by the feeding of alpha-amylase inhibitor from wheat,
there was evidence of pancreatic hypertrophy indicative of degenerative
changes in cellular morphology. In summary, therefore, it does not appear
that the amylase inhibitors from legumes and cereals are particularly delete-
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rious to animals, and perhaps humans, other than producing a possible
stimulatory effect on pancreatic function similar to what has been observed
with the trypsin inhibitors. It would be desirable, therefore, that foods
possessing high levels of amylase inhibitors such as beans and cereals be
processed thoroughly by heat treatment to insure their inactivation.

At one time, a number of alpha-amylase inhibitor preparations from
kidney beans (so-called starch blockers) were introduced onto the market.
These supposedly were capable of inhibiting the digestion of starch in the
intestinal tract to produce a reduction in caloric intake and consequent
weight loss. Clinical studies, however, did not support these claims (110~
112). Moreover, the amylase inhibitor represented only a minor constituent
of these commercial formulations, which also contained significant levels
of trypsin inhibitor and lectins (113,114). A subsequent study using a more
highly purified preparation of amylase inhibitor from white beans showed
that such a preparation in fact was capable of inactivating amylase in the
human intestinal lumen (115). It remains to be proven, however, whether
this effect actually will cause weight loss.

B. RoleinPlants

Since most amylase inhibitors of plant origin are active only against animal
alpha-amylase, it does not appear likely they serve to regulate carbohydrate
metabolism in the plant. A much more likely role for the these amylase
inhibitors is that they serve to protect seeds against insect predators. A
considerable body of evidence has demonstrated that most of the plant
amylase inhibitors are strongly active against amylases from insect species
that are known to attack these same plants (106,116). The addition of
amylase inhibitors from wheat (117) or kidney beans (118) to synthetic diets
fed to the cowpea weevil (Callosobruchus maculatus) adversely affected the
development and increased the mortality of this pest. Earlier reports on the
toxic effect of a bean lectin on the development of the cowpea weevil
(119,120) now have been shown to be due to the amylase-inhibitor content
of such lectin preparations (121). The successful transfer of the bean amy-
lase-inhibitor gene to the tobacco plant (122) presents the possibility that
genetic engineering involving the transfer of the gene for the amylase inhibi-
tor to other plants may be employed to enhance the resistance of such
plants to insects toward which they normally would be susceptible.

lll. LECTINS

A. Introduction

Paralleling the distribution of protease inhibitors in plants is a class of
proteins referred to as lectins. This term was introduced first by Boyd and
Shapleigh (123), who pointed out that this class of proteins exhibited a high
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degree of specificity toward human blood cells of various blood group
types. It was this high degree of specificity that led them to coin the word
lectin from the Latin word Jegere, meaning to pick or choose, to emphasize
the specificity that these proteins exhibit toward blood groups. One obvious
manifestation of this property is their ability to agglutinate the red blood
cells from various species of animals due to the interaction of multiple
binding sites of the lectins with specific glycoconjugate receptors on the
cell membrane. In fact, the term phyfohemagglutinin sometimes is used in
referring to lectins of plant origin. Over the ensuing years, it increasingly
has become apparent that the lectins exhibit a wide variety of other interest-
ing biological effects that enable them to play a key role as mediators of
cell recognition in living systems as well as providing powerful tools for the
study of carbohydrates and their derivatives, both in solution and on cell
surfaces (124). This brief overview gives primary consideration to their
physicochemical properties, nutritional significance, mode of action, and
their role in the plant. More specific details on the many varied aspects of
lectins may be found in Ref, 125, a book devoted to this subject.

B. Physicochemical Properties

A cursory examination of the physicochemical properties of some represen-
tative lectins shown in Table 3 suggests that, although there is a wide diver-
sity in their properties (126), certain broad generalizations can be made,
The most-important common feature is that most lectins are comprised of
either two or four subunits, each of which contains a specific sugar-binding
site. It is this feature of multivalency that accounts for the ability of lectins
to agglutinate cells or to precipitate glycoproteins or large polysaccharide
polymers, For example, concanavalin A, the lectin from the jack bean, is a
tetramer comprised of four identical subunits, each of which has a molecu-
lar mass of 26,000 daltons (Fig. 7). A rather more-complex situation is
exemplified by the lectins of the kidney bean (Phaseolus vulgaris). In this
bean, there is a family of five lectins (isolectins), each of which is a tetramer
of four subunits designated as L or E (Fig. 8). These two different subunits
confer leukoagglutinating (L) activity or erythroagglutinating (E) activity
to the parent tetramer. Thus, the isolectins referred to as L, and E, would
have leukoagglutinating and hemagglutinating activity, respectively, exclu-
sively, whereas the other three isolectins (E,L;, E,L,, and EL,) would dis-
play both activities, depending on the relative proportion of these two
subunits.

Not shown in Table 3 is the fact that metal ions (of calcium, manga-
nese, or magnesium) are required for the agglutinating activity by most
lectins and also the fact that most lectins are glycoproteins. Concerted
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TABLE 3 Physicochemical Properties and Sugar Specificity of Phytolecting

Carbo-
hydrate
Sugar Molecular Sub-  content
Plant source specificity weight® units (%)
Abrus precatorius (jequir-  «-D-Gal 65,000 2
ity bean) 134,000 4
Arachis hypogeae (peanut) o-D-Gal 110,000 4 0
Bandiera simplicifolia «-D-Gal 114,000 4
Bauhinia purpurea alba a-D-GalNAc 195,000 11
Canavalla ensiformis (jack  «-D-Man, 55,000 2 0
bean) a-D-Glc 110,000 4
Dolichos biflorus (horse «-D-GalNAc 113,000 4 3.8
gram) 109,000 4
Glycine max (soybean) D-Gal, 122,000 4 6
«-D-GalNAc
Lens cuiinaris® (lentil) a-D-Man, 52,000 2 2
a-D-Glc
Phaseolus coccineus GlcNAc 120,000 4
(scarlet runner bean)
Phaseolus lunatus® (lima D-GalNAc 124,000 2 4
bean) 247,000 4 4
Phaseolus vuigaris (black 128,000 5.7
bean)
Phaseolus vulgaris (red D-GalNAc 120,000 4 4.1
kidney bean)
Phaseolus vulgaris (wax D-GalNAc 120,000 4 10.4
bean)
Phaseolus vulgaris (navy D-GalNAc 128,000 4
bean)
Pisum sativum (garden «-D-Man, 53,000 4 0.3
pea) a-D-Gle
Psophocarpus tetragonoio-  a-L-Fuc 120,000 4 9.4
bus (winged bean) 58,000 2 4.8
Ricinus communis (castor  D-Gal,
bean) D-GalNAc 60,000
D-Gal 120,000
Vicia faba (field bean) D-Man, 50,000 4
D-GicNAc

Glc, glucose; GlcN, glucosamine; GlcNA¢, N-acetylglucosamine; Gal, galactose; GalN,
galactosamine; GalNAc, N-acetylgalactosamine; Fuc, fucose; Man, mannose
2l more than one value is given for molecular weight, there is evidence for the existence of

muitiple forms of the lectins (isolectins)
PNonhemagglutinating toxins

Also known as Lens esculenta

9Also known as Phaseolus limensis
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FIGURE 7 Schematic representation of the tetramer of concanavalin A. Each
subunit is approximately 42 x 40 x 39 A. Manganese and calcium sites are
indicated by Mn and Ca, respectively. The saccharide-binding site near the met-
als is indicated by S and the hydrophobic-binding site in the cavity by I. (From J.
W. Becker, G. N. Reeke, B. A. Cunningham, and G. M. Edelman, New evidence
on the location of the saccharide-binding site of concanavalin A. Reprinted by
permission from Nature vol. 259, pp. 406-409; Copyright © 1976 Macmillan
Magazines Limited.)

FIGURE8 Schematic representation of the tetrameric structure of the five isolec-
tins in the red kidney bean in which L and E are the subunits responsible for
leukoagglutinating and erythroagglutinating, respectively. (From J. B. Miller, R.
Hsu, R. Heinrikson, and S. Yachnin, Extensive homology between the subunits
of the phytohemagglutinin mitogenic proteins derived from Phaseolus vulgaris,
Proc. Nat. Acad. Sci., 72:1388, 1975.)
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efforts are being made to determine the primary, secondary, tertiary, and
quaternary structure of the various lectins, and such studies have revealed
a high degree of homology among the lectins of diverse origin (127). In
addition to concanavalin A, the three-dimensional structure based on X-ray
crystallography has been reported for the wheat germ agglutinin (128), pea
(129), peanut (130), soybean (131), and lentil (132) lectins. Despite the vast
amount of information we now have regarding the structural features of
many lectins (126), the reason for differences in their sugar specificity re-
mains elusive. A recent X-ray crystallographic study of the lectin from
Erythrina corallodendron (133) suggests that extensive differences in the
topography of the binding pockets of lectins most likely accounts for differ-
ences in sugar specificity.

C. Nutritional Significance

The extreme toxicity of the castor bean has been known for a long time,
but it remained for Stillmark to demonstrate its hemagglutinating property
in 1888 (134). Landsteiner and Raubitschek showed 20 years later that even
the seeds of many edible species of legumes contained substances capable
of agglutinating the red blood cells of various animals in a very specific
fashion (135). Following the pioneering work of Jaffé and co-workers and
subsequent research by Liener and Puszta firmly established the fact that
the lectins of the common bean (Phaseolus vulgaris) mainly are responsible
for the toxic effects resulting from the consumption of the raw bean (see
Ref. 136 for Liener’s review of this). Other legumes from which lectins
have been isolated and shown to be toxic upon oral ingestion include the
jack bean (Canavalia ensiformis), horse gram (Dolichos biflorus), hyacinth
bean (Dolichos lablab), Adzuki bean (Phaseolus vulgaris), lima bean
(Phaseolus lunatus), and the winged bean (Psophocarpus tetragonolobus).

The fact that lectins are distributed so widely in food items commonly
consumed in the human diet (137) raises the important question of whether
they pose any significant risk to human health. Although the lectins of most
food items are inactivated by the heat involved in processing or household
cooking (137), lectin activity nevertheless has been detected in such food
itemns as dry cereals and peanuts (137), dry-roasted beans (138), and pro-
cessed wheat germ (139).

There are a number of reports in the literature of human intoxication
in which lectins appear to have been the causative agents. For example, in
1948 a severe outbreak of gastroenteritis occurred among the population of
West Berlin because of the consumption of partially cooked beans that had
been airlifted into the city during its blockade (140). A mixture of beans
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RED KIDNEY BEANS

‘ Produce of America

IMPORTANT

These beans must be boiled for at

least ten minutes before eating.
Do not eat partially cooked.

FIGURE 9 Warning label that has been placed on packets of dry beans sold in
the retail markets in England. (From Ref. 136.)

and maize prepared by mothers in Tanzania as a porridge for infant food
was found still to possess lectin activity because of insufficient cooking
(141). Outbreaks of intoxication have been reported in England because of
the consumption of raw or partially cooked beans (142-144), Most of these
cases have involved individuals who had eaten raw beans as part of a salad
or as an ingredient in such dishes as chili con carne prepared in a slow
cooker. In the latter case, the conditions of heating were such that the
lectin activity was not destroyed completely even though the beans were
considered to be acceptable in terms of texture and palatability (145-148).
Prompted by these reports, warning labels now may be found on most dry
beans sold in retail food stores in England (Fig. 9).

D. Mode of Action

Jaffé and co-workers were the first to propose that the toxicity of bean
lectins could be attributed to their ability to bind to specific sites on the
surface of cells lining the intestinal tract (149). Subsequent studies by other
investigators have fully confirmed the fact that bean lectins bind to the
intestinal mucosa (150-154). This is illustrated in Fig. 10, which shows that
the lectin ingested by rats in the form of raw kidney beans binds to the
brush border region of the small intestine and may be endocytosed in part
by cells underlying the brush border membrane. As shown in Fig. 11, the
binding of the kidney bean lectin is accompanied by severe disruption of
the brush border and abnormal development of the microvilli.

One of the major consequences of lectin-induced damage to the intes-
tinal mucosa is a serious impairment in the absorption of nutrients across
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Figure 10 Immunofluorescence micrograph of part of a transverse section
through the duodenum of a rat fed a diet containing raw kidney beans. Incuba-
tion with rabbit antilectin immunoglobulins and fluorescein isothiocyanate—con-
jugated antirabbit immunoglobulin G, showing immunofiuorescence in brush
border region and within apical cytoplasm of mature enterocytes (arrows)
(L = intestinal lumen; the bar is equal to 50 um). (From Ref. 151 J)
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FiGURE 11 Electron micrographs of sections of brush borders from rats fed
diets containing (A) 5% raw kidney beans and (B} 10% casein. (From A,
Puzstai, E.M.W. Clarke, T. P. King, and J. C. Stewart, Nutritional evaluation
of kidney beans (Phaseolus vulgaris): Chemical composition, lectin content,
and nutritional value of selected cultivars, J. Sci. Food Agr., 30:843, 1979.)

the intestinal barrier. This phenomenon was demonstrated first by Jaffé
and Comejo (155) and later was confirmed by Donatucci et al. (156) by the
use of radioactive glucose and the technique of vascular intestinal perfu-
sion. This interference with the absorption of nutrients is nonspecific since
it also can be demonstrated with amino acids (157,158), lipids (159), and
vitamins (160). Superimposed upon this impairment in intestinal absorption
is the finding that enterokinase (161) and many of the brush border hydro-
lases are inhibited by lectins (158,162), a factor that also would contribute
to an interference with nutrient availability. The ability of lectins to cause
an increase in the weight and number of cells of the small intestine and an
increase in the secretion of mucin (163) also could contribute to an endoge-
nous loss of nitrogen and a negative effect on growth.

An alternative explanation for the toxic effects of dietary lectins is
suggested by the observation that germ-free animals are better able to toler-

ate raw beans in their diet compared to conventional animals (164,165).
This observation may be related to the fact that rats fed raw beans exhibit

an overgrowth or colonization of coliform bacteria in the small intestine
(154,159) It has been suggested that, as a result of the altered permeability
of the intestinal mucosa, these bacteria, or the endotoxins they produce,
gain entrance into the bloodstream and cause toxic systemic effects (166).
The exact mechanism by which lectins induce colonization of the small
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intestine is not known. A possible explanation may be that lectins, because
of their polyvalency, bind to receptor sites on the brush border as well as to
the bacterial coat and thus serve to “glue” bacteria to the luminal surface of
the small intestines.

Lectins and antibodies to lectins can be detected immunochemically
in the blood of rats and pigs fed raw kidney beans (167,168). This would
indicate that lectins themselves, either intact or partially digested, may be
absorbed and enter the circulatory system, In addition to a direct toxic
effect on certain target organs, other systemic effects that may ensue in-
clude an increase in protein and fat catabolism, a depletion of muscle
glycogen, and an elevation in blood insulin levels (169).

E. Rolein Plants

Among the various hypotheses that have been proposed for the role of
lectins in plants, at least two have attracted the most attention: that they
act as mediators of the symbiotic relationship between N-fixing microor-

ganisms, primarily of the genus Rhizobium, and leguminous plants, and
that they are part of a defense mechanism against insects and microbial
pathogens.

The association between legumes and N-fixing bacteria is highly spe-
cific. For example, the rhizobia that infect soybeans cannot nodulate gar-
den peas or white clover and vice versa. That lectins are responsible for this
specific interaction is based on the finding that the lectin from a particular
legume such as the soybean binds in a sugar-specific manner to the corre-
sponding rhizobial species but not to bacteria that are symbiotic to other
legumes. However, a number of exceptions to this general pattern have
been reported so that the lectin-recognition hypothesis continues to be a
subject of controversy (170). Nevertheless, it is possible to alter the lectin-
binding specificity by the transfer of genes essential for nodulation between
plants. For example, the pea lectin gene has been introduced into white
clover roots using Agrobacterium rhizogenes as a vector. The clover roots
that resulted then could be nodulated by a Rhizobium usually specific for
the pea (171). The transfer of the genes coding for the lectin of a N-fixing
plant to nonlegumes remains an exciting challenge of obvious agricultural
importance.

Various lines of evidence suggest that lectins may be involved in the
defense of plants against insects, bacteria, fungi, and viruses (170,172). For
example, the lectin from Phaseolus vulgaris was found to have a lethal
effect on the larvae of the bruchid beetle (119), presumably due to the
binding of the lectin to epithelial cells lining the midgut of this insect (173).
As pointed out in Section I1.B, however, it is believed that it is the amylase
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inhibitor that is responsible for the resistance of the common bean to the
cowpea weevil (121). A protein isolated from the seeds of a wild variant of
Phaseolus vulgaris and referred to as arcelin was found to be toxic to the
bruchid beetle, an important bean pest (174). It is related closely to the
lectin found in most other bean cultivars at both the amino acid and nucleo-
tide levels. The transfer of the arcelin allele to nonresistant bean cultivars
by backcrossing or by the addition of purified arcelin to artificial seeds
resulted in a high degree of insect resistance. The pea lectin has been ex-
pressed in the potato (175) and in the tobacco plant (176). In the latter
case, the transgenic tobacco plant was found to have increased resistance
to the tobacco bud worm; an additive protective effect was obtained with
the introduction of the cowpea trypsin inhibitor (176). In addition to their
role as a defensive measure against insects, the lectins from various plants
also have been shown to inhibit the growth of phytopathogenic bacteria
and fungi (177-179).

All of these studies suggest that plant lectins offer considerable prom-
ise for the genetic engineering of disease-resistant plants. Since this strategy
would raise the possibility of increasing the toxicity of such plants, careful
attention would have to be paid to the elimination of toxins by suitable
processing techniques. Although the lectins as well as the protease inhibi-
tors usually can be inactivated by proper heat treatment, the application of
such industrial-scale technological methods as air classification, extraction,
and texturization in the absence of heat may not be fully effective as a
means of detoxification. The best insurance against this possibility is the
careful monitoring of all newly introduced transgenic plants for the pres-
ence of antinutritional factors.

F. Analytical Techniques

Lectin activity is determined most commonly by measuring the degree to
which erythrocytes from the blood of a given animal are agglutinated, the
cells sometimes being sensitized by treatment with trypsin or some other
protease. The simplest assay is one involving serial dilution in which the
end point is determined by visual inspection of the clumped cells. While
this method is rapid and simple, it gives only semiquantitative results. A
spectrophotometric method has been proposed to increase the precision of
such an assay (180). The most-serious limitation of an assay that depends
on the agglutination of erythrocytes is the fact that one must choose the
blood of an animal for which the lectin is specific. Improper selection of
red blood cells may result in very low sensitivity or even negative results.
Furthermore, there is no assurance that agglutinating activity per se bears
any relevance to the in vivo effects of the lectin. Assuming that the toxicity
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of lectins to a given animal species depends on the lectins’ ability to bind to
the intestinal mucosa, the most-relevant technique would be one that mea-
sures the degree to which a certain lectin binds to the epithelial cells of the
target animal. Such a method has been proposed that involves an assay of
the enzyme-linked immunosorbent assay (ELISA) type in which one mea-
sures the binding of an enzyme-linked lectin to preparations of the brush
border membrane of the animal under study (181).

V. TOXIC AMINO ACIDS
A. Neurotoxins

Lathyrism, as it is known to occur in humans, is a paralytic disease associ-
ated with the consumption of Lathyrus sativus (more commonly known as
chickling or grass pea) or such related species as L. clymenum and L. cicera,
Although this disease has been recognized since ancient times, today the
disease is restricted to India, Bangladesh, and Ethiopia. It surfaces during
periods of famine resulting from droughts during which field crops become
blighted and, as alternative crops, these particular crops are cultivated. As
recently as 1975, over 100,000 cases of lathyrism in men between the ages
of 15 and 45 years were reported in India (182). The disease is characterized
by a nervous paralysis of the lower limbs that forces the victim to walk
with short, jerky steps; in extreme cases, death may result (183).

Spencer and Schaumberg have described an outbreak of lathyrism
that occurred during World War I among Romanian Jews confined to a
forced-labor camp in the Ukraine (184). For a period of 4 months, their
daily ration consisted of 400 g of L. sativus peas cooked in salt water plus
200 g of bread. The neurological symptoms of this disease persist even
today in those survivors who now live in Israel.

Attempts to identify the causative agent of human lathyrism have
been complicated by the fact that the sweet pea (L. odoratus) produces
another form of lathyrism (osteolathyrism) that is characterized in rats by
skeletal deformities (185). This is in contrast to what is observed with rats
who thrive quite well when they are fed L. sativus and do not display the
nervous disorder associated with the consumption of this species in hu-
mans. Historically, the osteolathyrogen of the sweet pea was the first to be
isolated and was identified as 3-aminopropionitrile (I) (186). See Fig. 12
for structures and distribution of the various lathyrogenic neurotoxins.

Several groups of workers in India (187-189) have succeeded in isolat-
ing a compound from L. sativus that may be the causative factor of human
lathyrism. This compound, identified as 3-N-oxalyl-2,3-diaminopropionic
acid (1), produced severe neurotoxic symptoms when injected into rats,

Kopie von subito e.V., geliefert fir BASF SE (COM02X01133)



286 Liener
ructure and Nam _Qccurrence
(1) N=C-CHs CH-N H, Lathyrus odoratus
3-aminopropionitrile? L. pusiilus
L. hirsutu
(o] h|lH2
1}
(it) HOOC-C~NH- CH,~ CH- COOH L. satlvus
3-N-.oxalyl-2,3-diamino- L. cicera
propionic acid b L. clymenum
NH,
(Hn) H,N — CHg~ CH3~ CH-COOH L. latifollus
2,4-diaminobutyric acid ® L. sylvestrls
NH2
|
awv) N=C-CHy—~CH-COOH Vicla sativa
3-cyanoalanine P
NH,
V) CHg~NH=~ CHs CH— COOH Cycas clrcinalis

3-N-mathylaminocalanine ¢

2 gsteolathyrogen

b nsurolathyrogen

¢ possible cause of amyolateral sclerosis in man

FIGURE 12  Structures and distribution of lathyrogenic factors.

chicks, and monkeys. This compound, as well as 2,4-diaminobutyric acid
(III) and 3-cyanoalanine (IV), also have been isolated from other Lathyrus
species as well as Vicia sativa and have been shown to produce neurotoxic
effects when administered by injection into several different species of ani-
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mals. However, attempts to reproduce neurolathyrism in animals by the
oral administration of these various neurotoxic amino acids generally have
proved unsuccessful (190,191); thus, the true causative agent of human
lathyrism has not been established unequivocally.

A high incidence of amyotrophic lateral sclerosis (ALS) is known to
occur among the residents of certain islands in the western Pacific (e.g.,
Guam and Rota). One of the traditional foods consumed by the natives in
these islands is the seeds of the false sago palm (Cycas circinalis), which
has led to the search for the toxic agent(s) in this plant that might be
responsible for this neurological disorder. An unusual nonprotein amino
acid, 3-N-methylamino-L-alanine (V) was first isolated from the cycad
plant by Vega and Bell (192). It subsequently was shown by Spencer et al.
that the repeated oral administration of this compound to macaques pro-
duced behavioral dysfunction and neuropathological changes that resem-
bled the prominent features of ALS noted in Guam (193). However, since
3-N-methylamino-L-alanine is only one of several potential neurotoxins
present in the cycad seed, it is premature to assign a causal role to any
single factor until further research is completed (194).

B. Hypoglycin

Consumption of the fruit of the plant Blighia sapida (known in Jamaica as
ackee and in Nigeria as isin) has been linked to a disease of undernourished
people, especially in Jamaica, known as vomiting sickness (see review by
Kean, Ref. 195). This plant was named after Captain Bligh, who introduced
it into the West Indies after he survived the mutiny on the Bounty. The
characteristic symptom of violent vomiting that accompanies the consump-
tion of the unripe fruit is followed by convulsions, coma, and even death in
some instances. Hypoglycemnia is the principal clinical sign, with sugar
levels as low as 20 mg per 100 ml of blood, compared to a normal value of
100 mg per 100 ml. The causative agent has been identified as beta-(methyl-
enecyclopropyl)alanine and is referred to as hypoglycin A (Fig. 13). It also
may occur as conjugate as the gamma-glutamyl dipeptide.

Hypoglycin follows essentially the same pattern of metabolism as
branched-chain amino acids. Some of these intermediates are shown in Fig.
13. It first is deaminated to B-(methylenecyclopropyl) pyruvate, which then
undergoes oxidative deamination to B-(methylenecyclopropyl)acetyl-CoA.
Formation of this interferes with the transfer of long-chain fatty acyl CoA
to carmitin, thus blocking the process of beta-oxidation. This results in an
impairment in gluconeogenesis that is accompanied by depletion of stored
glycogen and hypoglycemia. Because of its structural similarity to leucine,
hypoglycin also may interfere with the metabolism of this amino acid. This
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FIGURE 13 Structure of hypoglycin A and some of the intermediates involved in
its metabolism.

results in an accumulation of isovaleric acid and alpha-methylbutyric acid,
amino acids that could act as depressants of the central nervous system
(196). This could explain the syndrome of vomiting that accompanies the
ingestion of akee. Hypoglycin also has been reported to produce teratogenic
effects in rat and chick embryos (197).

C. Mimosine

The National Academy of Sciences has published a monograph that points
out the potential value of the legume Leucaena leucocephala (called kao
haole in Hawaii) as a forage crop for livestock and human feeding (198).
One of the principal factors limiting the use of this plant, however, is the
fact that an unusual amino acid, mimosine (Fig. 14), comprises 3%-5% of
the dry weight of the protein. This amino acid is believed to be responsible
for the poor growth performance of cattle when leucaena makes up more
than one-half of the diet. This adverse effect on growth has been attributed
to the underproduction of thyroxine, presumably due to the fact that the
rumen bacteria convert mimosine to 3,4-dihydroxypyridine (Fig. 14), which
acts as a goitrogenic agent (199). In nonruminants such as the horse, pig,
and rabbit, the goitrogenic effect is not very marked. These animals never-
theless do very poorly on diets containing leucaena, one of the characteristic
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FIGURE 14 Structure of mimosine and its goitrogenic metabolite 3,4-dihydroxy-
pyridine.

features being a loss of hair (200,201). It has been suggested, in fact, that
mimosine might be used as a defleecing agent in sheep (202). Certain seg-
ments of the human population, particularly in Indonesia, are known to
consume portions of the leucaena in their diets, and a loss of hair has been
observed frequently among those individuals who have eaten the leaves,
pods, and seeds in the form of a soup (203).

Although the goitrogenic effect of mimosine seems to be well estab-
lished, the precise mechanism of toxicity in other animal species remains
obscure. It can act as an inhibitor of pyridoxal-containing transaminases
(204), tyrosine decarboxylase (205), and both cystathione synthetase and
cystathionase (206). An inhibition of the last two enzymes may be of partic-
ular relevance since they play key roles in the conversion of methionine to
cysteine, a major component of hair protein, and could account for the
hair loss that is so characteristic of mimosine toxicity. Mimosine may exert
a more-direct effect on hair growth since it has been reported that leucaena
extracts destroyed the matrix of the hair follicles of mice (207).

Matsumoto et al. reported that the mimosine content of the seeds and
leaves of leucaena could be decreased by storing the plant in temperatures
in excess of 70°C in the presence of moisture (208). Yoshida showed that
the addition of ferrous sulfate to the diet of rats fed leucaena leaf meal
reduced mimosine toxicity, presumably due to a decrease in the absorption
of this amino acid from the gastrointestinal tract (209).

D. Djenkolic Acid

In certain parts of Sumatra, particularly in Java, the djenkol bean is a
popular item of consumption (203). The bean is actually the seed of the
leguminous tree Pithecolobium lobatum and resembles the horse chestnut
in size and color. Consumption of this seed sometimes leads to kidney
failure, which is accompanied by the appearance of blood and white, nee-
dlelike clusters in the urine. These clusters have been identified as a sulfur-
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S—-CHZ—*CI:H-COOH
NH2

Ficure 15 Structure of djenkolic acid, an amino acid present in Pithecolobium
lobatum.

containing amino acid known as djenkolic acid (Fig. 15), which comprises
1%-4% of the seed (210). Despite its structural resemblance to cystine, it
cannot replace cystine in the diet of rats, although it apparently can be
metabolized by the animal body (211). However, because of its relative
insolubility, much of the djenkolic acid escapes metabolic degradation and
tends to crystallize out in the urine.

E. Dihydroxyphenylalanine

The amino acid 3,4-dihydroxyphenylalanine or dopa (Fig. 16) is present in
fairly high concentrations in the fava bean (Vicia faba) (212-215), the velvet
bean (Stizolobium deeringianum) (216), and wheat and oats (217). Since
the consumption of the fava bean frequently is associated with a disease in
humans known as favism, the question has been raised as to whether dopa
might play a causative role in the etiology of this disease (218). Persons
genetically deficient in the enzyme glucose-6-phosphate dehydrogenase ap-
pear to be particularly susceptible to this disease, and one of the characteris-
tic clinical features of this disease is believed to be due to a marked lowering
of the glutathione content of the erythrocytes (219). In view of these facts,
it may be pertinent to note that the in vitro addition of dopa to the red
blood cells from individuals deficient in glucose-6-phosphate dehydroge-

HO

HO CHz—cl:H-COOH
NH2

FIGURE 16 Structure of 3,4-dihydroxyphenylalanine (dopa), an amino acid pres-
ent in the faba bean (Vicia faba), the velvet bean (Stizolobium deeringianum),
and wheat and oats.
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nase produced a significant lowering of the glutathione content of such
cells (218). Because of its high content of dopa, it has been suggested that
Vicia faba might be of therapeutic value in the treatment of Parkinson’s
disease (220).

F. Selenoamino Acids

Selenium poisoning in livestock due to the consumption of selenium-
accumulating plants of the genus Astragalus has been well documented
(221). The selenium of such plants is present in the protein in the form
of selenomethionine, selenocysteine, and selenocystine residues (Fig. 17).
Digestion of this protein in the digestive tract results in the liberation and
absorption of these selenoamino acids and, because of their structural simi-
larity to their natural sulfur analogues, they compete for the synthesis of
animal protein. Defective proteins thus formed could account for the loss
of hair and sloughing of hoofs, which are characteristic features of sele-
nium poisoning in livestock.

Chronic selenosis in human beings, presumably caused by eating corn
grown in seleniferous soil, has been reported in Colombia, South America
(222). In certain parts of Venezuela, the ingestion of nuts from a tree
known as coco de mono (Lecythis ollaria) produces a toxic syndrome in
humans characterized by abdominal distress, nausea, vomiting, diarrhea,
and loss of scalp and body hair. Using an assay system involving the mea-
surement of the cytotoxicity activity against mouse fibroblasts, the factor
responsible for this toxic effect was identified as selenocystathionine (223)

(Fig. 17).
CH3Se-CH2-(I:H-C00H CH3-8e~CH2-CH2-(I3H~COOH
NH2 NH,
Methylselenocystelne Selenomethionine
e e
Se-CHsCH~COOH . CHy-CHyCH-COOH
Se -CHz-(l:H—COOH CHZ-CHZ-(;,H-COOH
NH2 NH2
Selenocystine Selenocystathionine

FicURe 17 Structure of selenoamino acids.
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G. Indospicine

Indigofera spicata, or creeping indigo, is a tropical legume with potential
value as a forage and soil-improvement crop. It is known to contain a toxic
amino acid, indospicine, which is a structural analogue of arginine (224)
(Fig. 18). This compound was shown to cause cirrhosis and other pathologi-
cal changes of the liver when fed to rats, an effect that was attributed to its
role as an antagonist of arginine (225). It also has been reported that indos-
picine may produce cleft palates in the fetuses of rats given a single oral
dose of this compound on the 13th day of gestation (226).

H. Canavanine

Canavanine, like indospicine, is an analogue of arginine (Fig. 18), and it
occurs in high concentrations (up to 5%) in the seeds of the jack bean
(Canavalia ensiformis), and in a number of other legumes in lesser
amounts. Its role as a protective agent against insects has been discussed in
detail by Rosenthal (227). Alfalfa sprouts contain about 1.5% of their
dry weight of canavanine. A severe lupus erythematosus-like syndrome is
produced in monkeys fed alfalfa sprouts, an effect that has been attributed
to its canavanine content (228).

HoN - clf - CH,~ CH,~ CHy~ CHy~ CH-COOH
NH NH,

Indospicine

HoN-C=N- 0~ CHz CH; CH-COOH
|
NH, NH,

Canavanine

HyN- (|:l- NH- CH;- CH4~ CHZ-CiH—COOH
NH NH,
Arginine

FIGURE 18 Structures of indospicine and canavanine, antimetabolites of argi-
nine found in creeping indigo (Indigofera spicata) and jack bean (Canavalla ensi-
formis), respectively.
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O=(i2-CH2—CH2-(i:H-COOH cl:oou
NH NHp NHa CH-NH
OOH COOH
PLNG H g0 AN CHz
C{d CH ——=—3 CH /CH + CHy
CHa—CH - |
2—CHp CHa—CHa COOH
Linatine {~Amino- Glutamic
D-proline acid

Figure 19 Structure of 1-amino-D-proline, the antipyridoxine factor of linseed
(Linium usitatissimum) and its natural precursor, linatine.

I. Linatine

Flax or linseed (Linium usitatissimum) meal is considered a poor source
of protein for chicks, but considerable improvement may be effected by
extracting the meal with water and autoclaving for 30 min or by supplemen-
tation with pyridoxine (229,230). Klosterman and co-workers reported the
isolation of a pyridoxine antagonist from flaxseed that was identified as
1-amino-D-proline, which occurs naturally in combination, via a peptide
linkage, with glutamic acid (Fig. 19) (231). This peptide was given the name
linatine. 1-Amino-D-proline was actually four times as toxic as linatine
when injected into chicks, and its toxicity could be counteracted effectively
by the simultaneous injection of pyridoxine. Sasaoka et al. carried out
similar studies with rats and noted that I-amino-D-proline caused marked
changes in amino acid metabolism (232). These effects most likely are re-
lated to its effect on enzyme systems that require pyridoxal phosphate as a
cofactor (233).

J. Lysinoalanine

Alkaline extraction of soybeans, which is used frequently in the preparation
of soy protein isolates, is known to reduce the nutritive value of the protein,
attributable at least in part to the destruction of cystine (234). One of the
decomposition products of cystine is dehydroalanine (which also may be
derived from the decomposition of serine), which can interact with the
epsilon amino group of lysine to form lysinoalanine (Fig. 20). Alkali-
treated soybeans produced kidney lesions in rats, an effect that could be
reproduced by the administration of lysinoalanine (235,236).

Sternberg et al. have shown lysinoalanine to be widely distributed in
cooked foods, commercial food preparations, and food ingredients, many
of which had never been subjected to alkaline treatment (237). Many of
these foods had levels of lysinoalanine that were considerably higher than
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FIGURE 20 Formation of lysinoalanine from cystine (and/or serine) and lysine.

those found in commercial samples of soy protein isolate. The widespread
distribution of lysinoalanine among commonly cooked foods would tend to
indicate that this is neither a novel or serious problem because humans have
been exposed to proteins containing lysinoalanine for along time with appar-
ent impunity. This conclusion is strengthened by a recent report that the feed-
ingto preterm babies of a heat-processed infant milk formula containing high
levels of lysinoalanine had no effect on their renal function (238).
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