Executive Summary

Purpose

FSANZ has prepared this 1st Assessment Report for public consultation on the assessment of current restrictions on the production and processing of raw milk products for sale in Australia. It has been prepared in accordance with the principles of best practice regulation recommended by the Council of Australian Governments: identifying the problem that has prompted government action; the objectives of such action; and possible options for achieving the objectives. Also provided is an overview of:

- the current standards in the Australia New Zealand Food Standards Code (the Code) that apply to milk and dairy products
- the public health risks associated with raw milk products
- the current inconsistencies in the regulation of raw milk products in Australia.

We have undertaken a preliminary impact analysis and identified a preferred option at the 1st Assessment stage. This has been based on the technical assessment which includes information about the public health and safety risk posed by raw milk products and information on consumer knowledge and behaviours about consuming raw milk products.

Affected parties are encouraged to provide comment on the information presented in this report and the assessment to-date. The information will be considered during the 2nd Assessment stage, which will identify the final preferred option for regulating the production and sale of raw milk products in Australia and present the corresponding draft amendments to Standard 4.2.4 – Primary Production and Processing Standard for Dairy Products.

This Proposal is being assessed as a Major Procedure under the FSANZ assessment framework.
Introduction

Because of the potential for raw milk to be contaminated with pathogens, raw milk and products made from raw milk present a high level of risk to public health and safety if there are no control measures to manage the microbiological hazards that may be present. Pasteurisation has been the most effective control measure for eliminating pathogens that may be present in raw milk.

Measures to address food safety for the dairy industry from production of milk through to processing are contained in Standard 4.2.4. These measures include pasteurisation or an equivalent process.

FSANZ is undertaking an assessment of requirements for raw milk products and the alternative production and process controls that could manage the risk posed by raw milk through Proposal P1007.

Raw milk products are defined for the purpose of this Proposal as those which have not undergone pasteurisation or an equivalent pathogen reduction process. Proposal P1007 examines all raw milk products which may be derived from a number of milking animals including cow, goat, sheep, buffalo, and camel.

A Standard Development Committee (SDC) consisting of representatives from the industry, government regulators and consumers has been established by FSANZ to assist and advise on this work.

In August 2008, FSANZ released a Discussion Paper\(^1\) for public comment that introduced the proposed approach for the assessment of raw milk products. The large number of submissions received in response to this paper helped FSANZ in identifying the major stakeholders, the reasons for the demand for raw milk products and showed a general consensus to progress with the assessment of the current restrictions on the sale of raw milk products.

The Problem

The problem being addressed by this Proposal is whether the processing requirements currently mandated for milk and dairy products in the Code are too restrictive. That is, can an acceptable level of public health and safety be achieved through alternative processing and/or production measures to those currently specified.

There are a number of drivers for reviewing the current processing requirements including:

- ensuring an efficient and competitive food industry
- consumer demand for raw milk products
- national consistency in legislative requirements.

Objectives

The objective of Proposal P1007 is to enable a greater range of dairy products to be produced in, or imported into, Australia while maintaining an acceptable level of public health and safety for the Australian population.

As a matter of good regulatory practice, this Proposal also aims to address the current inconsistencies in the regulation of raw milk products in Australia. This includes:

- providing nationally applicable requirements rather than differing State-based provisions for raw milk products
- providing consistent permissions for the sale of imported and domestically produced raw milk products which enables domestic producers to compete fairly with international producers.

Risk Management Framework

In order to identify and assess risk management options for achieving the objective, a risk management framework was developed that categorises raw milk products into one of three categories based on the likelihood that pathogens may be present in the finished product and the potential public health risk posed. This ‘category framework’ approach was presented for public consideration in the Discussion Paper for P1007.

The three categories have been defined based on the effect that processing factors and final product properties have on pathogen survival and growth:

Category 1 products are defined as those products for which the properties and/or processing factors *eliminate* pathogens that may have been present in the raw milk.

Category 2 products are defined as those products for which the properties and/or processing factors *may allow the survival* of pathogens that may have been present in the raw milk but *do not support the growth* of these pathogens.

Category 3 products are defined as those products for which the intrinsic characteristics and/or processing factors *may be likely to allow the survival* of pathogens that may have been present in the raw milk and *may support the growth* of these pathogens.

The Technical Assessment (Attachment 1) subsequently undertaken has allowed the categories to be further elaborated at this stage.

Risk Management Options

FSANZ must consider various risk management options in order to decide the most effective and efficient approach to address the problem and achieve the objectives of the Proposal. These options include the status quo (the situation if no action is taken) and any other options that are practicable in regard to the specific objectives.

Four options have been identified within the risk management framework elaborated for raw milk products:

- **Option 1** – Maintain the status quo i.e. make no changes to the processing requirements for dairy products in the Code and therefore abandon the Proposal.
- **Option 2** – Amend the Code to allow for Category 1 products only
- **Option 3** – Amend the Code to allow for Category 1 & 2 products
- **Option 4** – Amend the Code to allow for Category 1, 2 & 3 products.
Technical Assessment

FSANZ has undertaken a Technical Assessment (Attachment 1) of raw milk products to draw together information from a number of reports², including three Microbiological Risk Assessments (Raw Cow Milk, Raw Goat Milk and Raw Milk Cheese), Dairy Risk Profile and Consumer Behaviour and Attitudes Study. The Technical Assessment presents the scientific basis for the approach taken and risk management decision made in assessing Proposal P1007. For example, it establishes:

- parameters to define the product categories
- the production and processing controls that need to be in place to manage potential microbiological hazards
- the risks associated with product categories if control measures are implemented
- consumer knowledge and behaviours regarding raw milk products.

Key findings include:

- For Category 1 and 2 products, combinations of specific production and processing controls will allow these products to be made while still maintaining an acceptable (low) level of public health risk.
- For Category 3 products, which include raw drinking milk, the level of public health risk cannot be reduced sufficiently and such products present a medium - high level of public health and safety risk.
- Information and warnings about the health and safety risks associated with consuming raw milk products may not be understood or dismissed by some consumers. Others consider that the risks are outweighed by the benefits (primarily health and nutritional). Some consumers will go out of their way to access illegal raw milk or will buy raw milk that is labelled as ‘not for human consumption’. Additionally, raw drinking milk is being provided to/consumed by vulnerable groups such as young children and pregnant women.

Impact Analysis

FSANZ has undertaken a preliminary impact analysis for Proposal P1007 to establish a preferred approach at the 1st Assessment stage. The analysis is based on:

- the scientific evaluation of the risks
- who is affected by the problem and the proposed solution
- the efficacy and practicality of risk mitigation measures (control measures) identified
- the qualitative costs and benefits to affected parties associated with each option.

² These supporting documents are available on the FSANZ website
Preferred Approach

To amend the current dairy processing requirements in the Code to allow for the production and import of raw milk products that meet the definition of Category 1 and 2 products into Australia (Option 3).

Reasons for Preferred Approach

In summary, Option 3 means the current processing requirements in the Code would be amended to allow for the following dairy products (outside of pasteurised dairy products) to be produced or imported:

- those that are thermised and stored for at least 90 days (cheese only)
- those for which it can be shown that the milk production and product processing factors result in a product where pathogens are eliminated
- those which can be shown to meet:
 - on-farm controls to achieve very low levels of pathogens in the raw milk
 - processing controls that do not allow for the net growth of pathogens and have final product properties that do not support their growth.

In comparison to the other options, this approach would allow for the greatest flexibility in processing measures for dairy products without compromising public health and safety for the Australian population. FSANZ will continue to work with industry and enforcement agencies to determine how potential changes to permissions will work in practice in order to undertake a full cost-benefit analysis. Additionally, the current inconsistencies in the regulation of raw milk products in Australia would be addressed by Option 3 but not Option 1 and Option 2.

Option 4 (to allow for all three categories of products) is not considered acceptable as Category 3 products present too high a risk to public health and safety.

Conclusion

This 1st Assessment Report provides an opportunity for stakeholders to comment on and supply information to FSANZ in regard to Proposal P1007.

Based on the preliminary impact analysis, the preferred approach at 1st Assessment is to amend the Code to allow for Category 1 and Category 2 raw milk products (Option 3). Option 4 (to allow for all three Categories of products) is not considered acceptable as Category 3 products present too high a risk to public health and safety.

FSANZ, with advice from the SDC and taking into consideration the information provided in submissions to this report, will undertake a detailed impact analysis of the costs and benefits to each affected party posed by each option. This assessment, together with the final preferred option, will be detailed in the 2nd Assessment Report.
Invitation for Submissions

FSANZ invites public comment on this Report based on regulation impact principles for the purpose of preparing an amendment to the Code for approval by the FSANZ Board.

Written submissions are invited from interested individuals and organisations to assist FSANZ in further considering this Application/Proposal. Submissions should, where possible, address the objectives of FSANZ as set out in section 18 of the FSANZ Act. Information providing details of potential costs and benefits of the proposed change to the Code from stakeholders is highly desirable. Claims made in submissions should be supported wherever possible by referencing or including relevant studies, research findings, trials, surveys etc. Technical information should be in sufficient detail to allow independent scientific assessment.

The processes of FSANZ are open to public scrutiny, and any submissions received will ordinarily be placed on the public register of FSANZ and made available for inspection. If you wish any information contained in a submission to remain confidential to FSANZ, you should clearly identify the sensitive information, separate it from your submission and provide justification for treating it as confidential commercial material. Section 114 of the FSANZ Act requires FSANZ to treat in-confidence, trade secrets relating to food and any other information relating to food, the commercial value of which would be, or could reasonably be expected to be, destroyed or diminished by disclosure.

Submissions must be made in writing and should clearly be marked with the word ‘Submission’ and quote the correct project number and name. While FSANZ accepts submissions in hard copy to our offices, it is more convenient and quicker to receive submissions electronically through the FSANZ website using the Standards Development tab and then through Documents for Public Comment. Alternatively, you may email your submission directly to the Standards Management Officer at submissions@foodstandards.gov.au. There is no need to send a hard copy of your submission if you have submitted it by email or the FSANZ website. FSANZ endeavours to formally acknowledge receipt of submissions within 3 business days.

DEADLINE FOR PUBLIC SUBMISSIONS: 6pm (Canberra time) 24 February 2010

SUBMISSIONS RECEIVED AFTER THIS DEADLINE WILL NOT BE CONSIDERED

Submissions received after this date will only be considered if agreement for an extension has been given prior to this closing date. Agreement to an extension of time will only be given if extraordinary circumstances warrant an extension to the submission period. Any agreed extension will be notified on the FSANZ website and will apply to all submitters.

Questions relating to making submissions or the application process can be directed to the Standards Management Officer at standards.management@foodstandards.gov.au.

If you are unable to submit your submission electronically, hard copy submissions may be sent to one of the following addresses:

Food Standards Australia New Zealand
PO Box 7186
Canberra BC ACT 2610
AUSTRALIA
Tel (02) 6271 2222

Food Standards Australia New Zealand
PO Box 10559
The Terrace WELLINGTON 6036
NEW ZEALAND
Tel (04) 473 9942
CONTENTS

INTRODUCTION .. 3

1. BACKGROUND TO PROPOSAL P1007 ... 3
 1.1 Raw Milk Products.. 3

THE PROBLEM .. 4

2. CURRENT STANDARDS .. 4
 2.1 Processing requirements for milk and dairy products.. 4
 2.2 Other requirements for milk and dairy products... 5
3. PUBLIC HEALTH RISKS .. 6
4. OTHER DRIVERS FOR REVIEWING CURRENT PROCESSING REQUIREMENTS 7
 4.1 Ensuring an efficient and competitive food industry ... 7
 4.2 Consumer demand for raw milk products... 7
 4.3 National consistency .. 8

OBJECTIVES .. 8

5. OBJECTIVES OF THE PROPOSAL ... 8
 5.1 Statutory considerations... 9
 5.2 Risk Management Framework.. 10

OPTIONS .. 11

6. RISK MANAGEMENT OPTIONS ... 11
 6.1 Option 1 – Status Quo... 11
 6.2 Option 2 – Amend the Code to allow for Category 1 products only............................. 12
 6.3 Option 3 – Amend the Code to allow for Category 1 & 2 products............................... 12
 6.4 Option 4 – Amend the Code to allow for Category 1, 2 & 3 products......................... 12
 6.5 Additional amendments to the Code .. 12

IMPACT ANALYSIS .. 13

7. TECHNICAL ASSESSMENT .. 13
 7.1 Product characterisation and associated risk... 13
 7.2 Consumer considerations.. 16
8. AFFECTED PARTIES .. 18
 8.1 Industry... 18
 8.2 Consumers... 19
 8.3 Government.. 21
 8.4 World Trade Organization notification... 21
9. ASSESSMENT OF OPTIONS .. 22
10. CONSULTATION AND COMMUNICATION .. 27
 10.1 Consultation ... 27
 10.2 Communication ... 27

CONCLUSION .. 29

11. CONCLUSION .. 29
 11.1 Reasons for Preferred Approach.. 29

ATTACHMENT 1 - TECHNICAL ASSESSMENT ... 31
ATTACHMENT 2 - OVERVIEW OF SUBMISSIONS RECEIVED ON DISCUSSION PAPER FOR
PROPOSAL P1007 .. 86
ATTACHMENT 3 - MEMBERSHIP OF THE DAIRY (RAW MILK PRODUCTS) SDC 92
ATTACHMENT 4 - MEMBERSHIP OF THE DAIRY SCIENTIFIC ADVISORY PANEL 93
SUPPORTING DOCUMENTS

The following material, which was used in the preparation of this Assessment Report, is available on the FSANZ website at:

SD1: Microbiological Risk Assessment of Raw Cow Milk
SD2: Microbiological Risk Assessment of Raw Goat Milk
SD3: Microbiological Risk Assessment of Raw Milk Cheese
SD4: Raw Milk Consumer behaviour and attitudes
SD5: Assessment of Potential health benefits associated with Raw Milk
Introduction

1. Background to Proposal P1007

Standard 4.2.4 – Primary Production and Processing Standard\(^3\) for Dairy Products came into effect on 5 October 2008. It contains measures to address food safety for the dairy industry from production of milk through to processing, including manufacture of specified dairy products. These measures include pasteurisation or an equivalent process.

During the development of Standard 4.2.4, consideration was given to undertaking an assessment of raw milk products. This work was deferred until completion of Standard 4.2.4. FSANZ has now commenced work on raw milk products through Proposal P1007, including addressing public health and safety issues, existing applications to amend the Australia New Zealand Food Standards Code (the Code) and regulatory inconsistencies.

A Standard Development Committee (SDC) consisting of representatives from the industry, government regulators and consumers has been established by FSANZ to assist and advise on this standard development Proposal.

In August 2008, FSANZ released a Discussion Paper\(^4\) for public comment and proposed a ‘framework’ for categorising and assessing raw milk products. A large number of submissions were received in response to this paper. The responses have helped FSANZ to identify:

- the major stakeholders for the Proposal
- the reasons for the demand for raw milk products
- the support, or not, for the assessment of the current restrictions on the sale of raw milk products
- the support, or not, for progressing with the proposed category approach for the assessment.

This 1st Assessment Report provides an opportunity for stakeholders to comment on and supply information to FSANZ in regard to progress to date. A second opportunity to comment will be provided on completion of the 2nd Assessment Report which will detail the full impact analysis including proposed amendments to the Code.

1.1 Raw Milk Products

Raw milk products are not defined in the Code but are defined for the purpose of this Proposal as those products which have not undergone pasteurisation or an equivalent pathogen reduction process\(^5\).

\(^3\) A primary production & processing standard is a set of obligations on primary producers and processors of food commodities. These standards are incorporated into Chapter 4 of the Code and apply in Australia only. Along with other standards in the Code they provide an approach to managing food safety and suitability in Australia that extends from production on the farm through to sale to the consumer.

\(^5\) Internationally, the use of the term raw milk may differ. For example the Codex Code of Hygienic Practice for Milk and Milk Products CAC/RCP 57-2004 defines raw milk as ‘milk which has not been heated beyond 40°C or undergone any treatment that has an equivalent effect’.
This Proposal is assessing a regulatory framework for all raw milk products which may be derived from a number of milking animals including cow, goat, sheep, buffalo, and camel.

The Problem

The problem being addressed by this Proposal is whether the processing requirements currently mandated for milk and dairy products in the Code are too restrictive. That is, can an acceptable level of public health and safety be achieved through alternative processing and/or production measures to those currently specified.

There are a number of drivers for reviewing the current processing requirements including:

- ensuring an efficient and competitive food industry.
- consumer demand for raw milk products
- national consistency in legislative requirements.

2. **Current Standards**

2.1 **Processing requirements for milk and dairy products**

Clause 15 of Standard 4.2.4 specifies processing requirements for dairy products. These provisions require milk that is to be sold as liquid milk or used in the manufacture of dairy products to be pasteurised (or equivalently processed).

<table>
<thead>
<tr>
<th>15</th>
<th>Processing of milk and dairy products</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Milk must be pasteurised by –</td>
</tr>
<tr>
<td></td>
<td>(a) heating to a temperature of no less than 72°C and retaining at such temperature for no less than 15 seconds; or</td>
</tr>
<tr>
<td></td>
<td>(b) heating, using any other time and temperature combination of equivalent or greater lethal effect on any pathogenic micro-organisms in the milk; or</td>
</tr>
<tr>
<td></td>
<td>(c) using any other process that provides an equivalent or greater lethal effect on any pathogenic micro-organisms;</td>
</tr>
<tr>
<td></td>
<td>unless an applicable law of a State or Territory otherwise expressly provides.</td>
</tr>
<tr>
<td>(2)</td>
<td>Milk processed under paragraph 15(1)(a) must be cooled immediately in a way that ensures that the growth of microbiological hazards in the milk is prevented or reduced.</td>
</tr>
<tr>
<td>(3)</td>
<td>Dairy products, other than cheese and cheese products, must be processed using –</td>
</tr>
<tr>
<td></td>
<td>(a) a heat treatment that uses a combination of time and temperature of equal or greater lethal effect on any pathogenic micro-organisms in the milk product achieved by paragraphs 15(1)(a) or 15(1)(b); or</td>
</tr>
<tr>
<td></td>
<td>(b) using any other process that provides an equivalent or greater lethal effect on any pathogenic micro-organisms.</td>
</tr>
<tr>
<td>(4)</td>
<td>Dairy products processed under paragraph 15(3)(a) must be cooled immediately in a way that ensures that the growth of microbiological hazards in the product is prevented or reduced</td>
</tr>
</tbody>
</table>
Alternative processing requirements to pasteurisation are permitted for cheese production under clause 16, including thermisation (in combination with ripening) and curd cooking\(^6\) in combination with ripening and minimum moisture content (which allows for the sale of very hard grating cheeses produced from raw milk).

16 Processing of dairy products to make cheese and cheese products

Milk or dairy products used to make cheese or cheese products must be processed –

(a) in accordance with subclause 15(1); or
(b) by being held at a temperature of no less than 62°C for a period of no less than 15 seconds, and the cheese or cheese product stored at a temperature of no less than 2°C for a period of 90 days from the date of processing; or
(c) such that –
 (i) the curd is heated to a temperature of no less than 48°C; and
 (ii) the cheese or cheese product has a moisture content of less than 36%, after being stored at a temperature of no less than 10°C for a period of no less than 6 months from the date of processing; or
(d) in accordance with clause 1 of Standard 4.2.4A.

Standard 4.2.4A – Primary Production and Processing Standard for Specific Cheeses permits the sale of four raw milk cheeses produced in accordance with French (Roquefort cheese) or Swiss regulations (Swiss Gruyere, Sbrinz, Emmental).

In addition to the processing provisions, Standard 4.2.4 specifies through chain food safety requirements which require dairy primary production businesses, dairy transport businesses and dairy processing business to control food safety hazards by implementing a documented food safety program.

2.2 Other requirements for milk and dairy products

2.2.1 Microbiological limits

Standard 1.6.1 – Microbiological Limits for Food specifies a number of microbiological limits for unpasteurised milk, butter made from unpasteurised milk and certain raw milk cheeses. This includes limits for *Campylobacter*, coliforms, *Escherichia coli*, *Listeria monocytogenes*, *Salmonella*, coagulase-positive staphylococci and Standard Plate Count.

2.2.2 Labelling

Standard 1.2.3 – Mandatory Warning and Advisory Statements and Declarations requires unpasteurised milk and liquid milk products to be labelled with an advisory statement to the effect that the product has not been pasteurised.

Clause 4 of Standard 1.2.4 – Labelling of Ingredients requires ingredients to be declared using the common name of the ingredient, or a name that describes the true nature of the ingredient, or if applicable a generic name. This requirement means that in relation to cheese made from unpasteurised milk, the ingredient declaration should include a statement that the milk is unpasteurised. In the case of cheese made other than from cow’s milk, it should also include the common name of the species from which the milk is sourced.

There are no other specific labelling requirements for raw milk products.

\(^6\) Curd cooking is the application of heat to cheese for technical purposes such as expelling moisture.
3. Public health risks

A range of microorganisms may be associated with dairy animals, the environment in which they are kept and the milking equipment used that may result in the contamination of milk. Additionally, the milking procedure, subsequent collection, storage of milk and processing milk into various dairy products carry the risks of further contamination or growth of pathogens. Pathogens typically associated with raw milk include *Coxiella burnetii, Brucella* spp. (*B. abortus* in cattle and *B. melitensis* for goat and sheep milk), *Salmonella* spp., *Yersinia enterocolitica, Campylobacter jejuni, L. monocytogenes, enterotoxigenic Staphylococcus aureus* and pathogenic *E. coli*.

Pathogenic organisms more frequently associated with human illness linked to the consumption of raw milk and raw milk products are *Campylobacter* spp., enterohaemorrhagic *E. coli* (EHEC)*, L. monocytogenes Salmonella* spp. and *S. aureus*. These organisms can cause a range of food-borne illness symptoms (e.g. gastroenteritis), but may also cause a number of other types of illnesses such as meningitis, septicemia, neurological conditions and haemolytic uraemic syndrome. In addition, certain illness may have serious on-going health consequences including reactive arthritis, irritable bowel syndrome, Guillain-Barré syndrome and renal impairment.

Even though raw cow milk is not permitted for sale in Australia, OzFoodNet’s Outbreak Register identified eight outbreaks (between 1998 and 2003) comprising 101 cases of illness (and 4 hospitalisations) associated with the consumption of raw cow milk. *Campylobacter* spp. was associated with five of these outbreaks, with *Cryptosporidium* spp. and *Salmonella Typhimurium PT44* accounting for one outbreak each. It should be recognised that outbreak data only represents a small proportion of actual cases of food-borne illness, as many outbreaks go unrecognised and/or unreported to health authorities.

Because of the potential for raw milk to be contaminated with pathogens, raw milk, and products derived from it, present a high level of risk to public health and safety if there are no control measures to manage the microbiological hazards that may be present. Pasteurisation has been the most effective control measure for eliminating pathogens that may be present in raw milk, contributing to the very low level of risk associated with the consumption of dairy products in Australia. Prior to the introduction of pasteurisation, dairy products such as liquid milk were frequently implicated in various forms of food-borne illness including tuberculosis.

A number of other processing factors can be used in the manufacture of dairy products to prevent pathogen survival or growth such as alternative heat treatment processes, pH, water activity and temperature. The effectiveness of these controls alone or in combination in eliminating or preventing the growth of pathogens will depend on the specific manufacturing protocol used, the properties of the final product and the microbiological status of the raw milk being processed. Where permissions for specific raw milk products have been included in the Code (e.g. very hard grating cheese, French Roquefort cheese, Swiss Emmental, Gruyere and Sbrinz cheeses), scientific evaluations have concluded that a low level of public health risk was presented by these cheeses given appropriate on-farm and/or processing controls.

7 Pathogenic *E. coli* are characterised into specific groups based on clinical, pathological and epidemiological characteristics of disease. EHEC is one of the five principal groups. Further information about pathogenic *E. coli* is presented in the three Microbiological Risk Assessments http://www.foodstandards.gov.au/standardsdevelopment/proposals/proposalp1007primary3953.cfm
FSANZ has undertaken three risk assessments to generate information on the public health risks which may be associated with raw milk products\(^9\). The *Microbiological Risk Assessment of Raw Milk Cheese* has been used to help identify the factors that have the greatest contribution to pathogen control during cheese manufacture and the key parameters for determining pathogen reduction, and conditions for growth and no growth. Risk assessments have also been undertaken for raw goat milk and raw cow milk that highlight the milk production factors that impact on the prevalence of pathogens in raw milk as well as the risks associated with the consumption of raw drinking milk. The outputs of these assessments have informed the risk management framework developed for raw milk products (discussed under 5.2) and have been used to assess whether raw milk product categories under certain production and processing controls (discussed under 7.2) present a low risk to public health and safety.

A Technical Assessment, provided at Attachment 1, presents the scientific basis for the approach taken and risk management decisions made in assessing this Proposal. It presents a through-chain analysis of the microbiological hazards and risks associated with raw milk and identifies primary production and processing factors that impact on pathogen control.

4. **Other drivers for reviewing current processing requirements**

4.1 **Ensuring an efficient and competitive food industry**

The Code allows the sale of French Roquefort cheese and three raw milk Swiss cheeses (Emmental, Sbrinz, Gruyere) through specific permissions under conditions specified in Standard 4.2.4A. These include production of these cheeses in accordance with French Ministerial Orders and Swiss Ordinances. These permissions were given following assessment of applications to FSANZ by the Swiss and French Governments (Swiss Federal Veterinary Office and French Ministry of Agriculture, Food, Fisheries and Rural Affairs). Currently there is no mechanism for domestic production of the same styles of cheeses. This has raised the issue of a ‘non-level playing field’ for Australian producers in that current permissions for specific raw milk products denies Australian cheese makers the same market opportunities.

The European Commission, in its submission to the Discussion Paper for Proposal P1007, expressed an interest in supplying a number of other raw milk cheeses to the Australian market. In addition, FSANZ currently has two applications on its Work Plan from a cheese trading company seeking increased permissions for raw milk cheeses in the Code to enable import and sale of a wider range of products.

4.2 **Consumer demand for raw milk products**

The Discussion Paper for Proposal P1007 invited information on consumer demand for raw milk products in Australia. A large number of responses were received supporting access to raw milk products, particularly raw drinking milk and raw milk cheeses, highlighting two facets to this demand:

- a belief that these products offer significant health and nutritional benefits (particularly raw drinking milk);
- consumer desire to access raw milk cheeses for their quality attributes.

Overall, proponents for raw milk products demonstrated strong views around consumer choice and the right to be able to choose to consume raw milk products. A summary of the main issues raised in submissions to the Discussion Paper is provided in Attachment 2. Submissions and anecdotal evidence indicates that the demand for raw milk has resulted in some producers and consumers circumventing legal requirements by participating in ‘cow share’ operations10 or consuming products not intended for human consumption such as milk labelled as ‘pet milk’ or ‘cosmetic/bath milk’. Additionally, FSANZ currently has an application on its Work Plan seeking permissions for the sale of raw cow milk.

Consumer demand for specialty cheeses has been growing in Australia and submissions received indicate that this demand is extending to raw milk cheeses. Those wanting access to such products consider them a gourmet product with a superior flavour, texture and taste profile compared with their pasteurised equivalents. It is estimated that just over 600 tonnes of permitted raw milk cheeses are imported annually11.

4.3 National consistency

The Code requires that milk and liquid milk products must be pasteurised (or an equivalent treatment), ‘unless an applicable law of a State or Territory otherwise expressly provides’. This allows for State and Territory legislation to permit the production and sale of raw milk and currently four States permit the production of raw goat milk for sale for human consumption (Queensland, New South Wales, South Australia and Western Australia). This outcome is contradictory to the intent of the Council of Australian Governments (COAG) Food Regulation Agreement12 in that there is inconsistent regulation of raw goat milk across Australia. It is estimated that there are 12 approved raw goat milk producers in these States selling approximately 300 000 litres of raw goat milk annually.

Objectives

5. Objectives of the Proposal

The objective of Proposal P1007 is to enable a greater range of dairy products to be produced in, or imported into, Australia while maintaining an acceptable level of public health and safety for the Australian population.

As a matter of good regulatory practice, this Proposal also aims to address the current inconsistencies in the regulation of raw milk products in Australia. This includes:

- providing nationally applicable requirements rather than differing State-based provisions for raw milk products
- providing consistent permissions for the sale of imported and domestically produced raw milk products which enables domestic producers to compete fairly with international producers.

10 ‘Cow share’ or ‘herd share’ programs are operations whereby consumers buy a ‘share’ in a cow. They pay a farmer a fee for housing, caring for and milking the cow. In return, the consumer receives a proportion of the animal’s milk.
11 This figure is a conservative estimate (Personal communication: Food and Beverage Importers Association and AQIS).
12 In November 2000, the COAG signed an Inter-Government Agreement, known as the ‘Food Regulation Agreement’, agreeing to a new food regulatory system. The Commonwealth of Australia and all the Australian States and Territories are signatories to the Agreement.
5.1 Statutory considerations

5.1.1 FSANZ Act

Where regulatory interventions are required (e.g. by developing or varying a food standard), FSANZ is required by its legislation to meet three primary objectives which are set out in section 18 of the FSANZ Act. These are:

- the protection of public health and safety; and
- the provision of adequate information relating to food to enable consumers to make informed choices; and
- the prevention of misleading or deceptive conduct.

In developing and varying food regulatory measures, FSANZ must also have regard to:

- the need for standards to be based on risk analysis using the best available scientific evidence;
- the promotion of consistency between domestic and international food standards;
- the desirability of an efficient and internationally competitive food industry;
- the promotion of fair trading in food; and
- any written policy guidelines formulated by the Ministerial Council.

5.2.2 Policy guidelines

The Australia and New Zealand Food Regulation Ministerial Council (Ministerial Council) developed an *Overarching Policy Guideline on Primary Production and Processing Standards*. This policy guideline specifies a number of high order principles for primary production and processing standards outlining that they will:

- be outcomes-based
- have a consistent regulatory approach across the Standards
- be consistent with the approach outlined in Chapter 3 of the Code
- be consistent with Codex standards
- address food safety across the entire food chain where appropriate
- facilitate trade and comply with Australia’s obligations under WTO\(^{13}\) agreements
- promote consumer confidence
- ensure the cost of the overall system is commensurate with the assessed level of risk

\(^{13}\) WTO refers to the World Trade Organization.
• provide a regulatory framework that only applies to the extent justified by market failure.

Any regulatory measures developed should be commensurate with risk and not impose any unnecessary additional economic burden on the dairy industry.

5.2 Risk Management Framework

In order to identify and assess risk management options for achieving the objective, a risk management framework was developed that categorises raw milk products into one of three categories based on the likelihood that pathogens may be present in the finished product and the potential public health risk posed. This ‘category framework’ approach was presented for public consideration in the Discussion Paper for P1007. Overall, the framework was supported in submissions as a sound approach to assessing raw milk products.

The three categories have been defined in terms of the effect processing factors and product properties of the final product have on pathogen survival and growth:

Category 1 products are defined as those products for which the:

- properties and / or
- processing factors

eliminate pathogens that may have been present in the raw milk.

Category 2 products are defined as those products for which the:

- properties and / or
- processing factors

may allow the survival of pathogens that may have been present in the raw milk but do not support the growth of these pathogens.

Category 3 products are defined as those products for which the:

- intrinsic characteristics and / or
- processing factors

are likely to allow the survival of pathogens that may have been present in the raw milk and can support the growth of these pathogens.

Given the increased potential for pathogens to be present, the food safety risk associated with each category increases from Category 1 to Category 3. In effect, the category approach provides for the assessment of combinations of microbiocidal and microbiostatic control measures (‘hurdles’) on pathogen growth or survival.

Details of the assessment of each category, including definitions and the parameters and processing factors that underpin them and allow for individual products to be categorised are provided in the Technical Assessment (Attachment 1). A summary of the category definitions and parameters proposed at 1st Assessment is given at section 7.
The ‘category framework’ allows risk management of the dairy sector that covers farming, milking, transport and manufacture (‘through-chain’) of all dairy products, including raw milk products (where an acceptable level of public health is achieved).

Options

6. Risk Management Options

FSANZ must consider various risk management options in order to decide the most effective and efficient approach to address the problem and achieve the objectives of the Proposal. These options include the Status Quo (the situation if no action is taken, which is included as the first option as the basis for comparison of other options) and any other options that are practicable in regard to the specific objectives.

The Office of Best Practice Regulation recommends that options other than explicit government regulation be identified where appropriate, for example, non-regulatory and self-regulatory approaches. However, in this case, as the objective concerns allowing a greater range of dairy products through amendments to current requirements in the Code all options identified for this Proposal call for explicit government regulation.

Four options have been identified within the risk management framework elaborated for raw milk products:

- **Option 1** – Maintain the status quo i.e. make no changes to the processing requirements for dairy products in the Code and therefore abandon the Proposal.

- **Option 2** – Amend the Code to allow for Category 1 products only

- **Option 3** – Amend the Code to allow for Category 1 & 2 products

- **Option 4** – Amend the Code to allow for Category 1, 2 & 3 products.

6.1 **Option 1 – Status Quo**

The first option is to not change the processing requirements for dairy products in the Code. This would mean:

- milk and dairy products, other than some cheeses, must be pasteurised or undergo a process of equivalent or greater lethal effect on any pathogenic microorganisms, unless an applicable State or Territory law provides an exemption

- cheese and cheese products are to be:
 - pasteurised (or equivalent process)
 - thermised and stored for at least 90 days
 - curd cooked to at least 48°C and final product stored for at least 6 months and less than 36% moisture (‘extra hard grating cheeses’)

- existing permissions for the three Swiss cheeses (Gruyere, Sbrinz and Emmental) and French Roquefort in Standard 4.2.4A would remain.
Further permissions for raw milk products would require a case-by-case assessment through an application process to FSANZ.

6.2 Option 2 – Amend the Code to allow for Category 1 products only

This option means current processing requirements in Standard 4.2.4 would be varied to allow products that meet the definition of Category 1. In summary, in addition to pasteurisation, Option 2 would allow for the following dairy products to be produced or imported:

- those that are thermised and stored for at least 90 days (cheese only)
- those for which it can be shown that the milk production and product processing factors result in a product where pathogens are eliminated (provide for a 5-log$_{10}$ reduction of pathogens). Extra hard grating cheeses and the three Swiss cheeses currently permitted would be allowed under this option
- the existing permission for French Roquefort (a Category 2 product) would remain in the Code because it has previously undergone a safety assessment.

6.3 Option 3 – Amend the Code to allow for Category 1 & 2 products

Option 3 extends the previous option to allow products that meet the definition of Category 2.

In summary, in addition to pasteurisation, Option 3 would mean Standard 4.2.4 would be amended to allow for the following products to be produced or imported:

- those listed under Option 2
- those which can be shown to meet:
 - on-farm controls to achieve very low (not detectable) levels of pathogens in the raw milk
 - processing controls that do not allow for the net growth of pathogens and have final product properties that do not support their growth.

This includes French Roquefort.

6.4 Option 4 – Amend the Code to allow for Category 1, 2 & 3 products

The final option would mean Standard 4.2.4 would be amended to allow the production and sale of all raw milk products, including raw drinking milk, provided they met production and processing requirements that could manage the safety of the product.

6.5 Additional amendments to the Code

6.5.1 Removal of State/Territory exemption for pasteurisation requirements

One of the subsidiary objectives of this Proposal is to provide nationally applicable requirements rather than differing State-based provisions for raw milk products.

14 The scientific evaluation of Roquefort cheese is provided in the Final Assessment Report for Application A499 To Permit the Sale of Roquefort Cheese, available on the FSANZ website at: http://www.foodstandards.gov.au/_srcfiles/A499_Roquefort_FAR_FINALv2.pdf#search=%22A499%22
Under all options, the phrase that allows States and Territories to exempt the pasteurisation requirements, ‘unless an applicable law of State or Territory otherwise expressly provides’ will be removed from Standard 4.2.4 in order to meet this objective.

6.5.2 Microbiological limits

The microbiological limits specified in Standard 1.6.1 Microbiological Limits for Food for unpasteurised milk and raw milk products will be reviewed as part of this Proposal in line with the product categories.

6.5.3 Labelling requirements

The need for specific labelling requirements for raw milk products will be determined during 2nd Assessment within the risk management options identified.

Impact Analysis

The Assessment reports on this Proposal will provide information to comply with the Council of Australian Governments (COAG) requirements for regulatory impact analysis. FSANZ will continue to consult with the Australian Government’s Office of Best Practice Regulation on meeting these requirements.

The preferred option will be based on an analysis that considers:

- scientific evaluation of the risks
- who is affected by the problem and the proposed solution
- efficacy and practicality of risk mitigation measures (control measures) identified
- costs and benefits to affected parties of the interventions associated with each option.

7. Technical Assessment

The following information, based on the outputs of the Technical Assessment (Attachment 1), informed the development of four risk management options.

7.1 Product characterisation and associated risk

The framework developed for assessing raw milk products groups them according to key characteristics that will eliminate, reduce or permit growth of pathogens. If processing controls were not in place, products across all Categories would present a high public health and safety risk. In certain cases this level of risk can be reduced to an acceptable level (i.e. low risk) through implementation of specific production and processing controls.

Further refinement of category definitions, including the parameters and or processing factors that underpin each category and allow for individual products to be categorised are presented below. While cheese is the primary raw milk product in international trade and has been the main focus of assessment work, category definitions and outcomes will be developed to apply to other products as appropriate.

Outputs from the three microbiological risk assessments undertaken for this Proposal have been used to determine the level of risk associated with each product category.
Where additional control measures for the production of raw milk have been identified for the management of potential microbiological hazards, the risks associated with product categories have been determined on the basis that these controls are in place. These additional control measures for milk production and processing are provided in Appendix 4 and 5 of the Technical Assessment.

7.1.1 Category 1

Category 1 products have been defined as those where intrinsic characteristics and/or processing factors eliminate pathogens that may have been present in the raw milk.

For this definition eliminate means the process15 will achieve an overall reduction of at least $5\log_{10}16$ (net reduction) of the specified pathogens.

7.1.1.1 Category 1 parameters

For a dairy product to be considered under Category 1 evidence that the control measures (microbiocidal or microbiostatic) used in production and processing can achieve a $5\log_{10}$ reduction of pathogens would need to be provided.

In addition to pasteurisation the assessment has identified two examples of processing factors and intrinsic characteristics for cheese that would meet Category 1 requirements:

1. Thermisation of milk at 64.5°C for 16 seconds in combination with a storage period of at least 90 days at no less than $7^\circ\text{C}17$.
2. Curd cooking at elevated temperatures ($>48^\circ\text{C}$) in combination with a storage period of at least 120 days at no less than 10°C. The final product moisture content must be less than 39%.

No additional on-farm requirements for raw milk for processing Category 1 products are recommended (i.e. beyond those already required by Standard 4.2.4).

7.1.1.2 Risks associated with Category 1

As Category 1 products provide for elimination of pathogens, by definition, the risk presented by such products is very low. A qualitative risk assessment undertaken for raw milk extra hard cheeses and cooked curd Swiss cheeses within the *Microbiological Assessment of Raw Milk Cheese* supports a very low risk for both the general and susceptible population groups where production includes:

- curd cooking at high temperatures ($>48^\circ\text{C}$), and
- ripening (in combination with a low moisture environment).

15 From the start of production until the earliest possible point of consumption. For example, for a cheese this would mean at the end of the maturation period.

16 Pasteurisation is generally accepted as being able to achieve at least a $5\log_{10}$ reduction of pathogens and this level of reduction has been used as the benchmark for evaluating raw milk cheese processes in previous assessments (such as for very hard grating cheese).

17 As described in section 2.1 of the Technical Assessment (Attachment 1), FSANZ is proposing to amend the current Thermisation parameters in the Code to align with New Zealand.
7.1.2 Category 2

Category 2 products have been defined as those products where intrinsic characteristics and/or processing factors may allow the survival of pathogens that may have been present in the raw milk but do not support the growth of these pathogens.

For this definition:

- **Survival** means no net increase of pathogens from receipt of milk to the end of the processing stage.
- **No growth** means that there should be no measurable increase (less than log 0.5) of pathogens in the final product to the end of shelf life.

7.1.1.2 Category 2 parameters

For dairy products to be considered under Category 2, evidence would need to be provided that:

- the raw milk used for processing has very low levels of pathogens
- the production process would not allow for a net increase in pathogens and that the final product does not support their growth.

As the primary source of contamination in raw milk products is from the raw milk itself, for Category 2 products the raw milk to be used for processing must not have detectable levels of pathogens. This means that raw milk for the production of Category 2 products would be required to meet a higher level of microbiological quality achieved through specific on-farm control measures. Such measures are described in section 6 of Attachment 1.

So far, at 1st Assessment, FSANZ has identified the combination of processing factors and intrinsic characteristics that would need to be controlled in the production of raw milk cheeses in order to meet Category 2 requirements. The factors are:

- the use of an active starter culture to achieve rapid acid production and pH drop
- a pH/salt-in-moisture profile that will not support the growth of pathogens
- a minimum ripening period and temperature.

These parameters, and others, will be further investigated at 2nd Assessment to inform the boundary between Category 2 and 3 products.

7.1.2.2 Risks associated with Category 2

The *Microbiological Risk Assessment of Raw Milk Cheese* qualitatively determined the level of risk for a number of selected cheese styles (cheddar, blue, feta, camembert) based on probabilistic modelling. The risk levels determined were very conservative due to the data gaps and assumptions made and cannot be directly ascribed to a product category.

18 There are recognised limitations in microbiological testing. When there are low levels of pathogens present the probability of detecting these pathogens depends on the methodology used and limit of detection. Therefore, a result of no detectable pathogens does not mean absence in the entire batch of milk. The processing factors and intrinsic characteristics of Category 2 products should be adequate to control very low levels of contamination.
What the modelling indicated, however, is the importance of certain parameters that determine whether pathogens survive or grow (e.g. pH and salt-in-moisture) and, therefore, the level of risk presented.

Where such controls (described above) can be met the risk to public health is **low**, (as determined in the assessment for Roquefort cheese) for both general and susceptible population groups.

7.1.3 Category 3 parameters

Category 3 products have been defined as those products likely to allow for the survival of pathogens that may have been present in the raw milk and may support the growth of these pathogens.

7.1.3.1 Category 3 parameters

Category 3 products are those dairy products that do not meet the requirements for Category 1 or 2. For cheeses this would include softer mould ripened varieties and fresh cheeses, which have a higher moisture and pH profile and can support the growth of pathogens. Raw drinking milk also falls into Category 3.

7.1.3.2 Risks associated with Category 3

By definition there are no or limited processing factors to prevent survival of pathogens in Category 3 dairy products and their intrinsic characteristics may support pathogen growth. Therefore, achieving ‘pathogen free’ raw milk, through the management of risk factors on farm, is a critical control.

Implementing practices to reduce the pathogen load in the farm and dairy environment and improving hygienic control over milk harvest may reduce the level and frequency of milk contamination but are not elimination measures. The *Microbiological Risk Assessment of Raw Cow Milk* indicates that even when there is very low contamination of the bulk milk (below the level of detection) pathogens will grow and cases of illness from *Campylobacter* spp., EHEC, *Salmonella* spp. and *L. monocytogenes* can be expected. No measures have been identified that would assure pathogens would not be present in the raw milk.

Outcomes from the Risk Assessment reports have determined that Category 3 products present a **medium to high** level of risk (depending on the pathogen) to both general and susceptible population groups because there are no measures to ensure pathogens are not present in bulk milk nor can subsequent handling and processing prevent survival and growth. The severity of illness that results from enterohaemorrhagic *E. coli* infection is a significant contributor to the level of risk for Category 3 products. Additionally, *L. monocytogenes* presents a high risk in these products for vulnerable groups.

7.2 Consumer considerations

An assessment of consumer issues that have been raised relating to consumer demand for raw milk products is provided in the Technical Assessment and summarised below.

7.2.1 Consumption behaviours

Risk management decisions take into account consumer knowledge and information needs as part of managing any risk identified.
For raw milk products, the consumer considerations identified as important to informing this process include: understanding what groups may be at greater risk from potential hazards; consumer behaviours and motivations for wanting raw milk products; and current consumer understandings of the nature of such products.

There is a limited literature base on consumer attitudes, understanding, and consumption behaviour regarding raw milk products. In order to gather additional Australian data, FSANZ commissioned a study of unpasteurised cow and goat milk consumers\(^\text{19}\) (the ‘consumer study’) and gathered information from submissions to the Discussion Paper for Proposal P1007. Section 8.2 of this Paper described consumption behaviours, with further detail provided in Attachments 1 & 2.

7.2.2 Vulnerable groups

Risks associated with raw milk products can be higher for vulnerable groups, particularly for the hazards EHEC and \textit{L. monocytogenes}.

Age is the most consistent risk factor for susceptibility to complications resulting from EHEC infection. Such complications include haemolytic uraemic syndrome (HUS) which can result in renal failure and has a case-fatality rate of 3% to 7%. Children less than 5 years and adults older than 65 years are at a greater risk of developing HUS.

Groups with compromised immune systems such as pregnant women and their foetuses, neonates, the elderly, transplant patients, patients on corticosteroid treatments, HIV/AIDS patients and alcoholics are those at risk for invasive listeriosis. Listeriosis may result in septicaemia, meningitis, encephalitis, and intrauterine or cervical infections in pregnant women which may result in spontaneous abortion or still-birth. Based on OzFoodNet data from 2002 to 2007 (OzFoodNet, 2008), the case mortality rate in Australia varies from 12% to 25%.

Submissions received on the Discussion paper for P1007 indicate that raw drinking milk, which is at risk of being contaminated with \textit{L. monocytogenes} and EHEC, is being provided to and consumed by vulnerable groups such as young children and pregnant women. The Consumer Study suggests that unpasteurised goat milk was more likely to be fed to infants and children because of perceived benefits relating to allergies or lactose/digestive issues (discussed under section 7.3.6).

7.2.3 Assessment of the potential health benefits associated with raw milk

A large number of submitters to the Discussion Paper stated that there are health benefits associated with the consumption of raw milk that should be taken into account in assessing Proposal P1007 and cited literature to support these claims. To address the claims made, FSANZ reviewed the literature cited by submitters in support of their comments to determine whether this evidence is of sufficient quality (taking into account study design and methodology; purpose and context of the study; statistical evaluation and epidemiological evidence) to validate the stated health outcomes.

The \textit{Assessment of the Potential Health Benefits with Raw Milk}\(^\text{20}\) found that the majority of cited literature was insufficient to support the health benefits and nutritional outcomes claimed.

\(^{19}\) A report \textit{Raw Milk and Consumer Behaviour and Attitudes} was prepared for FSANZ by Colmar Brunton Social Research and finalised in March 2009.

The only exception was for the relationship between raw milk consumption and reduced allergy sensitisation21 during childhood, where a substantial body of well designed studies was presented. Because these studies were well designed, FSANZ conducted a more thorough review of the science regarding the relationship between raw milk consumption and allergy sensitisation. This review concluded that a specific role for raw milk consumption in the protection against allergy sensitisation has not yet been established in the currently available domain of scientific literature.

7.2.5 Nutritional claims

A major motivating factor for raw drinking milk consumption is the perception that the nutritional profile of raw milk is superior to pasteurised milk. Milk itself is one of the most complete of all foods, containing nearly all the constituents of nutritional importance to humans. Pasteurisation does not impact on the nutritional importance of milk products in the Australian diet. Milk and milk products have been shown to be the richest source of calcium in the Australian diet and are important contributors to protein, vitamin A, riboflavin, vitamin B\textsubscript{12}, zinc and iodine. Further information on the contribution of various nutrients to the Australian diet is provided in the Technical Assessment (Attachment 1).

7.2.6 Milk allergies and lactose intolerance

A number of submissions and responses to the Consumer Study indicate that many people have a misunderstanding of or misinformation relating to the issue of food allergy and intolerance. For example, there is a belief among some respondents that being allergic to milk is associated with the pasteurisation of milk and that symptoms reduce or disappear by drinking raw milk. In addition, there is confusion between food allergy and food intolerance and whether these are only associated with cow milk. Information to clarify the issues of milk allergies, milk intolerance (lactose intolerance) and goat milk digestibility is provided in the Technical Assessment (Attachment 1).

8. Affected Parties

Parties that have been identified as being affected by the Proposal include: industry (including current dairy producers and processors, businesses looking to enter a raw milk products industry, importers and retailers), consumers (including those demanding raw milk products and those against raw milk products) and governments, including member nations of the World Trade Organisation (WTO).

8.1 Industry

The domestic dairy industry ranges from large production units to small, family businesses producing specialty or ‘boutique’ products. The Australian dairy industry produces dairy products of a high level of safety. The implementation of through chain control measures together with pasteurisation has been integral to this. There has been concern raised from the industry that the sale of raw milk products may impact on consumer confidence in the safety of dairy foods, particularly if there are outbreaks of food borne illness in Australia associated with them.

Submissions to the Discussion Paper demonstrated there is interest, particularly from some specialty cheese manufacturers and retailers, in being able to produce and sell raw milk cheeses in Australia.

21 The relationship refers to the development of allergies in general.
Submitters stated they are experiencing increased demand for such products and see a good opportunity for Australian producers to benefit from competing in this growing niche market. In previous assessments of raw milk cheese, particularly of Roquefort cheese, industry raised that permissions for specific imported cheeses in the Code created an unlevel playing field as domestic producers were unable to manufacture similar products.

Conversely, submissions demonstrated there are specialty cheese producers who are not in favour of permitting raw milk cheeses. Their reasons include:

- concerns around safety and the potential for the current reputation of the industry to be damaged
- that they do not want to see increased regulatory burden on existing cheese producers if raw milk products are allowed
- that current permissions in the Code are sufficient and flexible enough that they allow cheese where the milk is not heated as high as pasteurisation temperatures
- that there is a lack of evidence supporting the use of raw milk in cheese production to improve flavour.

Where raw milk cheese production is permitted internationally, particularly in Europe, there is a long history of production and controls systems established to support the production and sale of raw milk cheese. It has been raised in previous submissions to FSANZ that Australia, however, may not currently have the necessary systems and controls required for such products.

Submissions to the Discussion Paper also showed there are dairy farmers that want the opportunity to produce and sell raw drinking milk. Evidence for this is reflected by the current black market for raw drinking milk and supply of products such as ‘pet milk’ and ‘cosmetic’ milk products (discussed below under section 8.2).

Importers are also likely to be affected by this Proposal as there is the potential for imports of additional raw milk products. There is interest from importers of specialty cheeses in being able to import a wider range of raw milk cheeses to satisfy an increasing demand for gourmet specialty cheeses while countries, particularly the European Union, have expressed their desire to export more raw milk cheeses to Australia. The food service industry may also have increased opportunities to use domestic and imported raw milk products in their food.

8.2 Consumers

FSANZ was able to elicit information on the drivers of consumer demand for raw milk products in Australia through submissions to the Discussion Paper and findings of the consumer study. This demand can largely be divided into four areas:

- proponents of raw drinking milk and associated products because of perceived nutritional and health benefits
- individuals who opportunistically consume raw milk due to ease of access, for example farming families and farm workers
- advocates of raw milk cheeses that explain their choice in terms of superior flavour, texture and taste profile compared with their pasteurised counterparts
• ethnic groups now residing in Australia have a cultural tradition of using raw milk to produce traditional foods.

Additionally there may be particular value sets associated with the preference for raw drinking milk such as for whole foods produced through small scale traditional production techniques rather than large industrial processes.

Submissions on the Discussion Paper also included a small number of nutritionists and other health practitioners who stated they prescribe raw milk to patients such as the elderly, young children and those suffering ailments or diseases. Additionally, individual consumers commented that they:

• feed raw milk to their young children including infants, children under five years old and use raw milk as a supplement for breast milk
• use raw milk to relieve/cure chronic illness
• consume raw milk while pregnant.

Currently raw goat milk is allowed to be produced in four states. However, evidence from submissions and the consumer study indicates that many raw milk advocates are accessing illegal or ‘black-market’ raw milk, particularly raw cow milk, for example, through farmers markets. Other consumers have stated they buy ‘cosmetic’ or ‘pet food’ raw milk that is labelled as ‘not for human consumption’ which is often sold through health food stores or are participating in ‘cow share’ programs.

A large number of responses on the Discussion Paper were specifically around wanting access to raw milk cheeses for their quality attributes and the right to consumer choice.

Discussion around access to raw milk cheeses has been raised in Australia in recent years, particularly by high profile chefs and restaurateurs. This was evident during the assessment of raw milk French Roquefort cheese with many media articles and submissions advocating raw milk cheeses as gourmet foods that should be as available to Australian consumers as they are in Europe and elsewhere.

A number of the submitters to the Discussion Paper commented that increasing permissions for the production of raw milk cheese in Australia will provide:

• greater consumer choice
• increased local consumption
• reduced dependency on imported products.

FSANZ commissioned the qualitative study on raw milk consumers’ behaviour and attitudes in order to further develop an understanding of consumer knowledge, motivations and behaviour regarding consumption of raw milk products. A review of related literature was also undertaken (Appendix 3 of Attachment 1). Findings from this study are provided in the Technical Assessment (Attachment 1).

There are also consumers that have a general view that raw milk products are too risky and that the public should be protected from them as they do not understand the risks to themselves.
Potentially all consumers of dairy products are affected by this Proposal. The following points are indicative of the issues that may affect consumers:

- some consumers may consider that they may benefit as a result of a new range of raw milk products becoming available
- there may be confusion as to the safety of these products and whether this affects all or some sectors of the population such as those with an increased susceptibility to food borne illness
- should the Proposal result in a limitation of products that are available, consumers may consider they have lost freedom to make their own decisions about the foods they purchase;
- there may be increases in the price of raw milk products currently available to cover costs to businesses of implementing any new requirements.

8.3 Government

State and Territory Governments, through dairy authorities, statutory authorities, Departments of Health or local government, are responsible for implementation and enforcement of Primary Production and Processing Standards and therefore will be affected by any changes to requirements for raw milk products in the Code.

Additional issues for State and Territory enforcement agencies regarding raw milk products include:

- managing black market sales, particularly raw drinking milk
- the impact on NSW, Qld, SA & WA, if the phrase that allows jurisdictions to exempt the pasteurisation requirements for raw drinking milk in Standard 4.2.4 is removed. These States will have to consider amending their legislation to be in line with the national requirement.

Changes to the Code may also impact on trade (exports and imports) as well as border inspection of imported product. Therefore, Australian Government agencies such as the Department of Foreign Affairs and Trade and the Department of Agriculture, Fisheries and Forestry including the Australian Quarantine and Inspection Service (AQIS) may be parties affected by this Proposal.

8.4 World Trade Organization notification

As members of the WTO, Australia and New Zealand are obligated to notify WTO member nations where proposed mandatory regulatory measures are inconsistent with any existing or imminent international standards and the proposed measure may have a significant effect on trade.

There are relevant international standards and amending the Code to allow a greater range of raw milk products is likely to have a significant effect on international traded due to the greater potential for imports and exports of raw milk products. This issue will be fully considered during the assessment of the Proposal and, if necessary, notification will be recommended to the agency responsible in accordance with Australia’s obligations under the WTO Technical Barriers to Trade (TBT) or Sanitary and Phytosanitary Measures (SPS) Agreements.
This will enable other WTO member countries to comment on proposed changes to standards where they may have a significant impact upon them.

9. Assessment of Options

A preliminary impact analysis has been carried out for 1st Assessment (Table 1). This is based on the findings of the Technical Assessment and a qualitative analysis of the impact of each option on the affected parties.

The impact analysis shows that Option 3 (to amend the Code to allow for Category 1 and 2 products) is the preferred approach at 1st Assessment as it can meet the objective of the Proposal in maintaining an acceptable level of public health and safety (low risk). Option 1 and Option 2 would also maintain an acceptable level of public health and safety, however, they do not allow as much flexibility in the types of dairy products that could be produced under Option 3.

Option 4 (to allow for all three Categories of products) is not considered acceptable as Category 3 products (which include raw drinking milk) present too high a risk to public health and safety.

In summary, Option 3 means the current processing requirements in the Code would be amended to allow the following dairy products (in addition to pasteurised dairy products) to be produced or imported:

- those that are thermised and stored for at least 90 days (cheese only)
- those for which it can be shown that the milk production and product processing factors result in a product where pathogens are eliminated (provide for a 5-log10 reduction of pathogens)
- those which can be shown to meet:
 - on-farm controls to achieve very low (not detectable) levels of pathogens in the raw milk
 - processing controls that do not allow for the net growth of pathogens and have final product properties that do not support their growth.

A more detailed quantitative cost benefit analysis will be undertaken for 2nd Assessment to clearly establish the preferred option.
Table 1: Summary of impacts by option

<table>
<thead>
<tr>
<th>Option</th>
<th>Industry</th>
<th>Consumers</th>
<th>Government</th>
<th>Overall impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Costs: • No opportunity for producers, retailers or importers to access new products or markets (producers/importers would have to make an Application to FSANZ on a case-by-case basis). • Would not be able to compete with products that may enter the market from New Zealand under the TTMRA(^{22}). • Inconsistent permissions for the sale of imported and domestically produced raw milk products.</td>
<td>Costs: • No additional choice in products available.</td>
<td>Costs: • Will be out of line with New Zealand requirements which can enter Australia under the TTMRA. • Reference to Swiss and French legislation remains in the Code. • Current and potential future applications to extend permissions in the Code for raw milk products will need to be addressed on a case-by-case basis.</td>
<td>Net cost • No alternative processing measures allowed. • Current inconsistencies in the regulation of raw milk products in Australia remain.</td>
</tr>
</tbody>
</table>

Other information relevant to the analysis:

• Although the Status quo does not result in any change to the current level of public health & safety, it does not provide for any alternative processing measures for dairy product manufacture.

\(^{22}\) Discussed under section 10.1.5
<table>
<thead>
<tr>
<th>Option 2 – Code amended to allow Category 1 products only</th>
<th>Industry</th>
<th>Consumers</th>
<th>Government</th>
<th>Overall impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits:</td>
<td>• Some increase in the range of raw milk products (cheese) that can be produced and imported.</td>
<td>• Greater choice of raw milk products available and greater option to purchase domestically produced product.</td>
<td>• Allows reference of the Swiss Ordinances to be removed from the Code.</td>
<td>• Some alternative processing measures allowed.</td>
</tr>
<tr>
<td></td>
<td>• Australian producers will have the opportunity to produce cheeses of similar style to the three Swiss cheeses currently permitted in the Code.</td>
<td>• No additional risk to public health & safety from consuming dairy products.</td>
<td>• Little change to implementation & enforcement costs as a result of changes to the Code.</td>
<td>• Current level of public health & safety is maintained.</td>
</tr>
<tr>
<td></td>
<td>• Can maintain market and consumer confidence in the safety of Australian dairy products.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs:</td>
<td>• Australian industry would not be able to compete with Category 2 products that may enter the market from New Zealand under the TTMRA.</td>
<td>• Choice of raw milk products is limited to Category 1 products and French Roquefort cheese.</td>
<td>• Could result in future case-by-case applications to FSANZ to permit Category 2 type products.</td>
<td>• Some inconsistencies in the regulation of raw milk products remain.</td>
</tr>
<tr>
<td></td>
<td>• Australian industry would not be able to produce or supply Category 2 products which FSANZ has assessed as being able to be produced to a low level of risk e.g. Roquefort</td>
<td></td>
<td>• Reference to French legislation remains in the Code.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Inconsistent with New Zealand requirements which mean certain products (e.g. Category 2 products) can enter Australia under the TTMRA.</td>
<td></td>
</tr>
<tr>
<td>Other information relevant to the analysis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• This option satisfies the primary objective of establishing alternative processing measures for dairy product manufacture without compromising public health & safety. This option also addresses some of the current inconsistencies in the regulation of raw milk products. It will result in providing nationally applicable standards in the Code and some reduction in the need for case-by-case assessment of Applications. This option will provide for consistent permissions for the sale of imported and domestically produced Category 1-type products but inconsistent permission will remain for French Roquefort. Additionally, the reference to the Swiss Ordinances will be removed from the Code, however, reference to the French Ministerial Orders will remain.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• In addition to amending the production and processing requirements of Standard 4.2.4, amendments to the microbiological limits and labelling requirements in the Code may also be necessary.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 3 – Code amended to allow for Category 1 & 2 products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>Consumers</td>
<td>Government</td>
<td>Overall impacts</td>
<td></td>
</tr>
<tr>
<td>Benefits:</td>
<td>Benefits:</td>
<td>Benefits:</td>
<td>Net benefits:</td>
<td></td>
</tr>
</tbody>
</table>
| ▪ Greater range of raw milk products can be produced and imported.
 ▪ Australian producers will have the opportunity to produce cheeses of similar style to the three Swiss cheeses and French Roquefort currently permitted in the Code.
 ▪ Should maintain market and consumer confidence in the safety of Australian dairy products given appropriate systems and hazard controls are in place.
 ▪ Consistency with New Zealand requirements and therefore provides a level playing field with products entering from New Zealand. | ▪ Greater choice of raw milk products available.
▪ Greater option to purchase domestically produced product.
▪ No additional risk to public health & safety from consuming dairy products. | ▪ Allows reference to the Swiss Ordinances & French Ministerial Orders to be removed from the Code
▪ Consistent with New Zealand requirements. | ▪ Greater range of alternative processing measures allowed.
▪ Maintains an acceptable level of public health & safety (given the appropriate systems & controls are in place). |
| Costs: | Costs: | Costs: | Net costs: |
| ▪ In order to enter the market for Category 2 products additional controls need to be in place (additional to those already required under Standard 4.2.4) | ▪ Does not provide access to Category 3 products. | ▪ Possible increase in the cost of implementation & enforcement to ensure necessary systems and hazard controls are in place. | ▪ Additional costs to ensure necessary systems and hazards controls are in place to manage risk. |
| **Other information relevant to the analysis:** |
| ▪ This option satisfies the primary objective to a greater degree than the previous option – it provides for more alternative processing measures for dairy product manufacture without compromising public health and safety. This option also addresses the current inconsistencies in the regulation of raw milk products in Australia.
▪ Category 2 products can present a higher risk than Category 1 products if hazards are unmanaged. However, control measures have been identified that will keep risk low for both the general population and vulnerable groups.
▪ In addition to amending the production and processing requirements of Standard 4.2.4, amendments to the microbiological limits and labelling requirements in the Code may also be necessary. |
Option 4 – Code amended to allow for Category 1, 2 & 3 products

<table>
<thead>
<tr>
<th>Industry</th>
<th>Consumers</th>
<th>Government</th>
<th>Overall impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits:</td>
<td>• Greatest range of raw milk products can be produced and imported.</td>
<td>• Provides greatest choice of raw milk products for consumers</td>
<td>• Allows reference to the Swiss Ordinances & French Ministerial Orders to be removed from the Code.</td>
</tr>
<tr>
<td>Costs:</td>
<td>• Costs of additional requirements to produce Category 2 or 3 products.</td>
<td>• Increased risk to public health & safety.</td>
<td>• Eliminates the need for case-by-case assessment of raw milk products.</td>
</tr>
<tr>
<td>Costs:</td>
<td>• Increased risk to public health & safety.</td>
<td>• Will require extensive education, communication and labelling programs to be implemented to educate consumers about risk.</td>
<td>• Resource intensive and high cost for enforcement agencies to administer permissions and ensure necessary systems and hazard controls are in place.</td>
</tr>
<tr>
<td>Net benefits:</td>
<td>• Additional costs to ensure necessary systems and hazard controls are in place to manage risk, including extensive communication and education programs.</td>
<td>• Does not support an appropriate level of public health and safety (Public health & safety would be compromised).</td>
<td></td>
</tr>
<tr>
<td>Other information relevant to the analysis:</td>
<td>Category 3 products present the highest risk. By definition, these products allow the survival and growth of any pathogens present. The Risk Assessment work undertaken has shown the levels and frequency of contamination of raw milk by pathogens can be minimised to a degree by certain animal health and production practices however, such controls cannot eliminate pathogens and pathogen-free milk cannot be guaranteed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additionally, Category 3 raw milk and raw milk products have little history in the Australian market and therefore there would be little consumer understanding of the risks associated with their consumption. Extensive communication and education programs and potentially labelling requirements would need to be implemented to inform consumers of the risk and to counter misleading claims by raw milk advocates that claim the products do not pose a risk (or the risk is outweighed by the benefits), especially for vulnerable groups. The same is also likely for producers who do not understand the risks associated with producing and supplying Category 3 products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This option will allow the greatest flexibility in how dairy products are processed. However, as Category 3 products have been found to present too high a risk, allowing these products to be produced will compromise the level of protection of public health and safety.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Consultation and Communication

10.1 Consultation

The FSANZ process for the development or amendment of a standard involves a consultative and transparent process that reaches and involves the industry concerned, State and Territory Government enforcement agencies, as well as consumers. In addition to the FSANZ statutory consultation processes, FSANZ will engage with affected parties on an ongoing basis through the Dairy (Raw Milk Products) SDC (discussed below) and through targeted consultations. For example, FSANZ staff have made on-site visits with raw goat milk producers and met with specialty cheese manufacturers, who have raised an interest in manufacturing raw milk cheeses, in order to identify drivers for stakeholder positions and attitudes. An overview of other consultation activities undertaken to-date for the Proposal is provided below.

10.1.1 Consultation on this Proposal

In August 2008 a Discussion Paper was developed and released for public consultation to seek feedback on the proposed ‘category framework’ approach and to elicit information on the extent of demand for raw milk products in Australia.

The Discussion Paper was open for public consultation for seven weeks including a one-week extension. There were 903 submissions received at the end of the seven weeks. The comments received will be taken into account in the assessment of the Proposal. A summary of the issues raised in submissions is provided in Attachment 2, some of which are also described in this report under Section 11 – Affected Parties.

10.1.2 Public Consultation on Proposal P296

The Initial Assessment Report for Proposal P296 - Primary Production & Processing Standard for Dairy raised the issue of developing a management framework for raw milk products and invited submissions on this matter. The comments received in response to the Initial Assessment Report for P296 will be taken into consideration in addition to submissions received on this Discussion Paper.

10.1.3 Standard Development Committee

The SDC for Proposal P1007 has evolved from the Dairy SDC for Proposal P296. In May 2007, the FSANZ Board appointed members of the Dairy SDC to continue the work on raw milk products under Proposal P1007 as well as increasing membership by adding additional expertise in raw milk issues. A list of members of the Dairy (Raw Milk Products) SDC is provided at Attachment 3.

10.1.4 Scientific Advisory Panel

FSANZ established a Dairy Scientific Advisory Panel to provide technical assistance and advice to FSANZ during the preparation of the microbiological risk assessments. The panel consists of a number of scientific and technical experts from industry and government and its terms of reference are to:

- provide comment and advice on the microbiological risk assessment undertaken by FSANZ as part of the dairy standard development process

23 The Discussion Paper can be accessed through the FSANZ website: http://www.foodstandards.gov.au/standardsdevelopment/proposals/proposalp1007primary3953.cfm
provide guidance in identifying additional sources of data

assist in addressing uncertainty or variability in the information underpinning the microbiological risk assessment reports.

A list of panel members is provided in Attachment 4.

10.1.5 Collaboration and consultation with New Zealand Food Safety Authority

The Chapter 4 Standards in the Code and the current processing requirements for milk and dairy products do not apply in New Zealand. However, New Zealand has also faced similar issues to Australia in that there is a demand for raw milk products and there are legal restrictions on production. In response, the New Zealand Food Safety Authority (NZFSA) also undertook work to examine processing requirements for raw milk products in New Zealand. There were many similarities in each country's proposals and it was recognised there was an opportunity for the two agencies to work collaboratively to develop options for risk management that would, where possible, be similar in each country. FSANZ and NZFSA have continued to consult and collaborate where appropriate in developing the product categories, the parameters to define each of the three categories, the technical consistency in the proposed on-farm and processing requirements for raw milk products and labelling of some raw milk products.

10.1.5.1 Trans Tasman Mutual Recognition Arrangement

The Trans Tasman Mutual Recognition Arrangement (TTMRA) is an arrangement between the Australian (Commonwealth), State and Territory Governments of Australia and the Government of New Zealand to remove regulatory barriers between Australia and New Zealand. One of the principles of the TTMRA is that if a good is legally manufactured in or imported through one jurisdiction it is deemed legal in all others, even if applicable standards differ. Australia exempted all risk food from the TTMRA which allows the Imported Food Control Act (1992) to remain in effect.

On 1 October 2009, NZFSA introduced new regulations that allow for production and importation of raw milk products that meet requirements such as demonstration of a pathogen elimination step (5-log10 reduction) or controlling the growth of pathogens throughout the manufacturing process24. For those products without a defined pathogen elimination step, additional on farm and processing requirements are established within the new regulations under the Animal Products Act 1999. In addition, all dairy production processes in New Zealand are required to have an approved and registered Risk Management Programme or Food Safety Programme.

The New Zealand requirements are in line with FSANZ’s preferred approach at 1st Assessment (Option 3), in that they allow for Category 1 and Category 2 type raw milk products to be produced or imported into New Zealand25. This change means that raw milk products that are permitted to be produced in, or imported into, New Zealand will be able to enter Australia under the TTMRA.

24 Details of the changes to permissions for raw milk products in New Zealand can be found on the NZFSA website http://www.nzfsa.govt.nz/dairy/subject/unpasteurised-milk-products/index.htm
25 NZFSA used the same ‘category framework’ to undertake their assessment of raw milk products, however, the final regulations do not use this terminology.
10.2 Communication

Organisations or individuals with an interest in this Proposal can seek to have their names listed as an interested party by emailing the Standards Management Officer at standards.management@foodstandards.gov.au their full contact details. From time to time people on the list will receive updates or other information about the Proposal P1007.

Conclusion

11. Conclusion

Preferred Approach

To amend the current dairy processing requirements in the Code to allow for the production and import of raw milk products that meet the definition of Category 1 and 2 products into Australia *(Option 3).*

11.1 Reasons for Preferred Approach

In summary, *Option 3* means the current processing requirements in the Code would be amended to allow for the following dairy products (outside of pasteurised dairy products) to be produced or imported:

- those that are thermised and stored for at least 90 days (cheese only)
- those for which it can be shown that the milk production and product processing factors result in a product where pathogens are eliminated
- those which can be shown to meet:
 - on-farm controls to achieve very low levels of pathogens in the raw milk
 - processing controls that do not allow for the net growth of pathogens and have final product properties that do not support their growth.

In comparison to the other options, this approach would allow for the greatest flexibility in processing measures for dairy products without compromising public health and safety for the Australian population. FSANZ will continue to work with industry and enforcement agencies to determine how potential changes to permissions will work in practice in order to undertake a full cost-benefit analysis. Additionally, the current inconsistencies in the regulation of raw milk products in Australia would be addressed by *Option 3* but not *Option 1* and *Option 2*.

Option 4 (to allow for all three Categories of products) is not considered acceptable as Category 3 products present too high a risk to public health and safety.

To assist FSANZ undertake a full and comprehensive impact analysis to inform the final preferred option for Proposal P1007, affected parties are encouraged to provide comment on the information presented in this Report and the assessment to-date. The information from submissions will be considered during the 2nd Assessment stage of the Proposal.
The full impact analysis will be detailed in the ‘2nd Assessment Report’, which will identify the final preferred option for regulating the production and sale of raw milk products in Australia and present the corresponding draft amendments to Standard 4.2.4. This report will also be released for public comment.

ATTACHMENTS

1. P1007 Technical Assessment Report
2. Overview of submissions received on Discussion Paper for P1007
3. Membership of the Dairy (Raw Milk Products) Standard Development Committee
4. Membership of the Dairy Scientific Advisory Panel
Introduction

The Code specifies processing requirements for dairy products that essentially require all products (except for a number of cheeses26) to have undergone pasteurisation or an equivalent pathogen reduction process. These processing measures have been integral to ensuring the high level of public health and safety associated with dairy products in Australia.

In October 2008, through chain food safety requirements for milk production and processing came into effect in the Code through Standard 4.2.4 – Primary Production and Processing Requirements for Dairy Products. This Standard was developed specifically to cover milk production, transport and processing where pasteurisation is used as a critical control in product manufacture. The second stage of the development of Standard 4.2.4 (Proposal P1007) is to elaborate through chain requirements for the production of raw milk products27 where it can be established that an acceptable level of public health and safety can be met.

This Technical Assessment presents the scientific basis for the approach taken and risk management decisions made in assessing Proposal P1007. It draws on a number of microbiological risk assessments and other reports undertaken by FSANZ28:

- A Risk Profile of Dairy Products in Australia (FSANZ, 2006)
- Microbiological Risk Assessment of Raw Cow Milk (FSANZ, 2009a)
- Microbiological Risk Assessment of Raw Goat Milk (FSANZ, 2009b)
- Microbiological Risk Assessment of Raw Milk Cheese (FSANZ, 2009c)
- Assessment of Potential Health Benefits Associated with Raw Milk (review of cited literature)
- Raw Milk Consumer Behaviour and Attitudes Study (Colmar Brunton, 2009)

The Technical Assessment is structured in two sections. The first section presents a through chain analysis of the microbiological hazards/risks associated with raw milk and identifies primary production and processing factors that impact on pathogen control as well as consumer knowledge, motivations and behaviours in relation to raw milk products.

The second section describes the risk management framework developed for assessing raw milk products and the level of risk determined for each product category, including the additional control measures that would be required for the production of raw milk products. It also provides an assessment of consumer issues that have been raised relating to consumer demand.

26 Processing requirements for cheese and cheese products allows for some alternative processing measures to pasteurisation which include thermisation in combination with storage, and curd cooking (at >48°C) in combination with storage and a minimum moisture content. A number of specified imported cheeses are also permitted (Roquefort, Emmental, Gruyere, Sbrinz).

27 For the purpose of this Proposal, raw milk products are those which have not undergone pasteurisation or an equivalent pathogen reduction process.

28 These documents are available on the FSANZ website http://www.foodstandards.gov.au/standardsdevelopment/proposals/proposalp1007primary3953.cfm
SECTION 1: Through Chain Assessment

1. Primary Production

A range of microorganisms may be associated with dairy animals, the environment in which they are kept and the milking equipment used that may result in the contamination of milk. This section on primary production identifies those microbiological hazards of greatest public health concern; the primary production factors that impact on their presence, and the current requirements relating to on farm milk production.

1.1 Microbiological hazards

Pathogens typically associated with raw milk include *Coxiella burnetii*, *Brucella* spp. (*B. abortus* in cattle and *B. melitensis* for goat and sheep milk), *Salmonella* spp., *Yersinia enterocolitica*, *Campylobacter jejuni*, *Listeria monocytogenes*, enterotoxigenic *Staphylococcus aureus* and pathogenic *Escherichia coli*. (ICMS, 1998). Those organisms more frequently associated with human illness linked to the consumption of raw milk and raw milk products are (Jaros et al., 2008):

- *Campylobacter* spp.
- *E. coli* spp.
- *L. monocytogenes*
- *Salmonella* spp.

The prevalence and contamination routes for these hazards are discussed further below.

Other pathogen associations include:

- *Toxoplasma gondii* (in raw goat milk)
- *Burkholderia pseudomallei* (affecting goats and sheep in tropical and sub-tropical regions. Infection, however, is mainly through direct contact of skin wounds and abrasions).
- *Cryptosporidium* spp.

A characterisation of microbiological hazards associated with dairy products is provided in *A Risk Profile of Dairy Products in Australia* (FSANZ, 2006).

1.1.1 *Campylobacter jejuni*

Many animals carry *C. jejuni* (responsible for most cases of human campylobacteriosis) as part of their normal intestinal flora with no evidence of illness. The occurrence of *C. jejuni* in dairy animals varies but most studies, primarily in cattle, report less than 50% prevalence\(^{29}\) in animals tested (FSANZ, 2009a).

\(^{29}\) Prevalence refers to the proportion of animals affected by a disease agent (tested positive) in a particular population at a specific time. It can relate to the number of cases/carriers within a herd or the proportion of herds affected within a study.
Studies in sheep (meat production) show a similar occurrence (Wallace, 2003) though an Australian study reported a higher prevalence in cattle than sheep (Bailey et al., 2003). In the dairy herds sampled, Campylobacter prevalence ranged from 0 to 24%, with a median prevalence reported of 6%.

Contamination of raw milk by C. jejuni may occur as a result of faecal contamination of teats which then contaminate milking equipment and lines during the milking process. C. jejuni has also been reported to have caused mastitis in cows resulting in direct shedding into milk (ICMSF, 1996) although this is rare. There is little Australian data on the prevalence of C. jejuni in bulk raw milk but there have been a number of outbreaks of campylobacteriosis in Australia (5 between 1995 and 2004) linked to the consumption of raw milk (OzFoodNet data: 1995-June 2004). International surveys of bulk raw milk (cow) have reported prevalence of Campylobacter from 0 to 18.2%.

1.1.2 E. coli spp

E. coli are a common part of the intestinal flora of humans and other warm-blooded animals. Of greatest concern for raw milk are pathogenic strains such as enterohaemorrhagic E. coli (EHEC\(^{30}\)) which can cause severe disease in humans and for which the intestinal tract of ruminants (particularly cattle and sheep) are major reservoirs. There have been many studies looking at the prevalence of EHEC (primarily O157:H7) in cattle internationally and in Australia which have reported a range of prevalence from 0 – 20.6% (FSANZ, 2009a). A survey of Australian dairy cattle in 1997-1998 found 1.9% of faecal samples taken on farm to be positive for E. coli O157 (Cobbold, 2000) while a survey of sheep for E. coli O157 found 0.1% of faecal samples taken on farm to be positive (Djardjevic, 2001).

While E. coli mastitis can occur the level is low and intramammary E. coli O157 infections have not been documented. Contamination of raw milk generally occurs as a result of faecal contamination of the animal, particularly the teats, which directly contaminate milk during milking operations. Contamination of E. coli O157 in Australian milk (cow) has been reported at 1-3% (FSANZ, 2009a). There are no Australian data on the prevalence of EHEC in goat and sheep milk.

1.1.3 L. monocytogenes

L. monocytogenes is commonly found in the environment and may be present in the intestinal tract of various animal species. Listeriosis in ruminants can result in meningoencephalitis, septicaemia or abortion in pregnant animals though many animals may carry L. monocytogenes without any evidence of disease. Clinical disease is more common in small ruminants.

There is seasonal variation in the prevalence of Listeria spp, in ruminants with higher levels observed in winter than summer. Epidemiological studies (Knightingale et al., 2004; Nightingale et al., 2005; Esteban et al., 2009) have also shown a difference in prevalence and transmission characteristics between bovine and small ruminant farms. In these studies a significantly higher prevalence of L. monocytogenes positive samples has been reported for bovine farms\(^{31}\) than for small ruminant farms. It is indicated that faecal shedding in cattle is much greater than in small ruminants resulting in bovine farms maintaining a higher prevalence of L. monocytogenes through cattle acting as amplifiers of the organism by re-contaminating the environment.

\(^{30}\) The term EHEC is commonly used to refer to a subgroup of Shiga Toxin producing E. coli (STEC) that cause haemorrhagic disease in humans. Serotypes included in this group are 0157:H7, 026:H11, 0111:H-, 0157:H-.

\(^{31}\) These include faecal, feed, water and soil samples taken from farms with no listeriosis cases.
On small ruminant farms, a higher prevalence in feedstuffs than faecal samples has been observed indicating feed as a primary transmission route.

While mastitis due to *L. monocytogenes* has been documented it is rare and contamination of raw milk by *L. monocytogenes* results primarily from faecal and environmental contamination. While there is little Australian survey data on the presence of *L. monocytogenes* in raw cow milk, overseas survey data from the last 10 years typically report less than 5% prevalence in raw cow milk (FSANZ, 2009a), though levels as high as 17% have also been reported. Survey data from Europe, Australia and the US on ewes and goats milk indicate contamination from 0 to 3.0% and 0 to 4.0% (Ryser & Marth, 2007).

1.1.4 *Salmonella* spp.

The natural reservoir of *Salmonella* spp. is in the intestinal tract of warm and cold-blooded vertebrates, including dairy animals. Infected animals may show no evidence of disease and intermittently excrete small to large numbers of the organism in their faeces leading to contamination of the surrounding environment including soil, pasture, streams and lakes. *Salmonella* spp can survive for several months in favourable environmental conditions including faecal matter, moist soil and animal feed.

Salmonella shedding in cattle has been reported to be highly variable. The prevalence in dairy cattle in the US, for example, has been reported as ranging from 2.1 to 27.5%. In Australia, a *Salmonella* spp. prevalence of 6.8% (n=310) has been reported in beef cattle (Fegan et al., 2004). A study of slaughter age animals in Australian dairy, beef and sheep farms found a 17% prevalence of non Dublin *Salmonella* spp in dairy herds and a 5.5% to 13% prevalence in the beef herds sampled (Vanselow et al., 2007). Prevalence in sheep flocks was reported at 3.5%. This study also estimated an individual animal level prevalence which for the dairy cattle herds sampled was 1.7%.

Contamination of raw milk with *Salmonella* spp. occurs as a result of faecal contamination of the animal, particularly the teats, which directly contaminate milk during milking operations. International data shows prevalence of *Salmonella* spp. in raw cow milk ranging between 0 to 11.8 %. South Australian data obtained during the period 1996 to 2000 shows a contamination rate of 2.7 percent (n=37) in raw milk, whilst a survey conducted in 2008 in Western Australia reported a prevalence of 7.6% (n=183). Australian data indicates an overall contamination rate of 0.2% for raw goat milk and there have been no reported detections in sheep milk.

1.1.5 *S. aureus*

Animals carry *S. aureus* on various parts of their bodies, including the udder and teats, where they sometimes cause infection. *S. aureus* is the most important bacterial cause of mastitis (clinical and subclinical) and its presence in milk can be related to the health status of the herd in respect to mastitis. Organisms are shed directly into the milk and numbers can range from <10 to several thousand per mL of milk with occasional counts of 10^5 cfu/mL (Asperger, 2002).

Occurrence of staphylococci are common in raw milk however not all strains are able to produce staphylococcal enterotoxin (responsible for food-borne illness). Strains of *S. aureus* from animal sources are considered less likely to produce enterotoxin than strains from human sources (Stewart, 2003).

32 Survey data from Australia reported no detections (0%).
The rate of enterotoxigenic or coagulase positive *S. aureus* isolates from animals is variable. In a study by Phillips *et al* (2001a, 2001b) of Australian beef and sheep carcasses, the prevalence of coagulase-positive staphylococci was around 24%.

In a Western Australian survey of bulk cow milk undertaken in 2007, 26.8% of samples tested positive for coagulase positive staphylococci (n=183).

1.2 Primary production factors for contamination of raw milk

Contamination of raw milk generally occurs via two means: when microorganisms are shed directly into raw milk from the udder as a result of illness or disease, or through contamination from the external surface of the animal and the milking environment. The primary production factors (animal, environmental and milking related practices) that impact on these routes of contamination are discussed in *A Risk Profile of Dairy Products in Australia*. The major factors are summarised below.

1.2.1 Animal health

The health and disease status of milking animals has a significant impact on the contamination of raw milk due to:

- pathogens being shed in the faeces which then contaminates the animal and the environment
- pathogens being shed directly into milk as a result of mastitis
- pathogens being shed directly into milk from other zoonoses (e.g. *Brucella* spp, *Mycobacterium bovis*).

1.2.1.1 Carrier status

While animals showing clinical signs of disease may be identified and their milk withheld from supply, many animals can be infected by a range of pathogens without any evidence of illness (asymptomatic carriers). As outlined in section 1.1, the prevalence of pathogens is variable and the frequency and amount of pathogen excreted by a carrier varies with the organism, the animal, its husbandry and immune status and the natural history of the disease in that animal species (FSANZ, 2009a). Pathogen shedding may be reduced by managing stress and diet while good agricultural practices (maintaining good farm hygiene, clean water and feed, pest control etc.) can reduce entry and spread.

1.2.1.2 Mastitis

Mastitis is inflammation of the mammary gland, usually caused by bacteria which have entered the teat canal and moved to the udder. Infection can be contagious (spread from infected to uninfected animals) or environmental, occurring as a result of ascending infection through the teat canal by organisms present in urine, faeces, soil and bedding. Infection is commonly subclinical (no visible signs evident in the animal or milk) with large numbers of organisms from the infected udder being shed into the milk.

Good milking and environmental hygiene and appropriate management of animals during lactation and drying off are the primary measures used to control mastitis.
1.2.1.3 Other zoonoses

The zoonotic agents that may be shed directly into milk and of primary concern for dairy herds and human health include *M. bovis* (causative agent of tuberculosis in cattle) and *Brucella* spp. In Australia, *M. bovis* and *Brucella abortus* (agent causing bovine brucellosis) have been eradicated through programs combining vaccination and test and slaughter. Ongoing monitoring and surveillance programs assure that Australia remains free of these zoonoses. *B. melitensis* (major cause of brucellosis in sheep and goats) has never been reported in sheep and goats in Australia. To help prevent these zoonotic agents entering Australia the Australian Quarantine and Inspection Service (AQIS) maintain import requirements on dairy products entering the country (discussed under Section 1.4.1).

Ingestion of contaminated raw milk or raw milk products has also been suggested as a route of transmission of *Coxiella burnetii* however the main route of transmission of this pathogen to humans is through inhalation (e.g. of dust in contaminated environments).

1.2.2 The environment and farm management

Pathogens may originate from the farm environment (feed, water, animal holding areas, milking areas, faeces etc.) and the farm management practices relating to these will impact on entry and spread, and subsequent contamination of raw milk.

1.2.2.1 Feed

The potential for pasture, fermented feeds (e.g. silage) and concentrates to be a potential source of microbial hazards is discussed in *A Risk Profile of Dairy Products in Australia*. Of particular importance to raw milk production is the relationship between the feeding of fermented feeds and the prevalence of *L. monocytogenes*. The occurrence of *L. monocytogenes* in poor quality silage is well documented and it is known that there is a causal relationship between feeding improperly fermented silage (pH 4.0 to 5.0) and the prevalence of listeriosis in ruminants. In a study by Nightingale *et al.* (2005) the practices of feeding silage and feeding poor-quality silage were associated with a higher prevalence of faecal shedding of *L. monocytogenes* while animals with access to pasture had a lower rate of shedding.

1.2.2.2 Water

Water for stock drinking is a potential source of contamination. Water sources can become contaminated with cud and/or faecal material, feed etc. and the sediment in water can support bacterial growth and be a reservoir for pathogens. Water trough sediments, for example, have been reported as a reservoir for *E. coli* O157 and possible source of infection for this pathogen (Lejeune *et al.*, 2001). Maintaining areas around drinking points in a good condition and the frequent cleaning of water troughs can help ensure water is of a suitable quality for stock.

Water used in the milking shed may be used for teat cup washing, washing of teats, milking plant flushing and rinsing, milk vat flushing and rinsing etc. If it contains microbiological pathogens the animal being milk is exposed and the milk collected becomes contaminated.

1.2.2.3 Animal holding areas/housing

Intensive housing of animals may increase the risk of contamination of udders, leading to mastitic infection, due to closer proximity of animals, concentration of faeces, contact with bedding etc. Pathogens that have been associated with intensive housing for cattle include *L. monocytogenes, E. coli, B. cereus* and *Salmonella*.
If holding areas are poorly designed and maintained the spread pathogens is amplified due to increased soiling of udders and teats with faecal material.

1.2.2.4 Herd size

There is some association between herd size and the prevalence of pathogens including *Salmonella* and *Campylobacter*. In a study by Kabagamb et al (2000) large herd sizes (>100 animals) were associated with increased *Salmonella* shedding. This may have been as a result of stress or be related to the differing management practices between large and small herds. Bailey et al (2003) identified stocking density as a risk factor for *Campylobacter* shedding in cattle and sheep in Australia.

1.2.3 Milking practices

1.2.3.1 Teat washing and disinfection

The teat surface is the major avenue of entry for microorganisms into raw milk. Pre-milking udder hygiene e.g. washing with clean water and drying using hand towels, reduces milk contamination by transient bacteria located on the udder.

Post-milking teat disinfection reduces the resident teat skin bacterial population, which is the main source of infection for the mammary gland. In dairy cattle, the rate of new intramammary infection due to *S. aureus* and *St. agalactiae* is reduced by approximately 50% when post-milking teat disinfection is practiced (Sheldrake & Hoare, 1980).

Additionally, the hands of milking personnel need to be considered as a possible source of microbial contamination of the teat and udder. Good personal hygiene practices need to be employed. Milking equipment also needs to be well maintained, cleaned and sanitised.

1.2.3.1 Milk cooling and storage

At milking, the temperature of milk leaving the animal is approximately 37°C. This temperature is optimum for the growth of many pathogenic microorganisms. At temperatures below 5°C, growth of most pathogenic bacteria is prevented or reduced. Therefore the rapid cooling of milk to and storage at 5°C will minimise the potential growth of micro-organisms. Current industry practice is the cooling of milk to 5°C or less within 3.5 hours from the start of milking.

1.2.4 Milk collection and transport

Inappropriate temperature control of milk during transportation can lead to pathogen growth and so time temperature control during transport is a major consideration. Additionally, transport equipment and containers can be a source of contamination if they have not been adequately cleaned and sanitised or they do not adequately protect milk during transport.

1.4 Current requirements

There are a number of points throughout the milk primary production chain where control measures can be implemented to minimise contamination of raw milk by pathogenic microorganisms. Standard 4.2.4 already specifies a number of food safety requirements for dairy primary production businesses to manage possible hazards:

- implement a documented food safety program (defined in Standard 3.2.1 – Food Safety Programs)
include controls that manage hazards arising from:

- inputs (feed, water, chemicals [including veterinary and agricultural chemicals] or other substances used in connection with the primary production of milk)
- the design, construction, maintenance and operation of premises and equipment
- milking animals
- persons involved in milking
- milking practices

ensure milk is only sourced from healthy animals

cool and store milk to prevent or reduce the growth of microbiological hazards

have pest control and cleaning and sanitising programs

ensure that persons undertaking primary production activities have appropriate skills and knowledge (competencies)

have a system to enable the tracing of inputs, milking animals and the milk produced.

These controls have been developed for general hazard management of milk produced for further processing (including pasteurisation or equivalent treatment). When milk is being produced for raw milk products even greater stringency of measures may be required to manage the specific risk factors for the pathogens identified above. The Codex Code of Hygienic Practice for Milk and Milk products (Codex, 2004) identifies additional provisions for the production of milk used for raw milk\(^{33}\) products to reduce the likelihood of hazards occurring during the primary production phase (summarised in Appendix 1). The scope of the Codex Code of Practice however does not extend to the production of raw drinking milk.

Standard 4.2.4 also specifies requirements for dairy transport businesses that include:

- implementing a documented food safety program
- having a cleaning and sanitising program
- use of time temperature controls
- having a system to identify the immediate supplier and immediate recipient
- ensuring persons undertaking transport activities have appropriate skills and knowledge.

1.4.1 Quarantine requirements

AQIS and Biosecurity Australia maintain import requirements for dairy products entering Australia. A quarantine permit must be obtained in order to import dairy products (products containing 10 % or more, by weight, of a dairy product) into Australia. The conditions for import depend on whether the country exporting is free from Foot and Mouth Disease. All consignments must be accompanied by an import permit and a specific sanitary certificate signed by an Official Government Veterinarian of the exporting country.

\(^{33}\) Codex defines raw milk as milk which has not been heated beyond 40 °C or undergone any heat treatment that has an equivalent effect.
While these requirements are mainly concerned with the transfer of foot and mouth disease, they effectively require that dairy products are sourced from healthy animals and that there are appropriate controls in place within the country of origin to ensure this. For all dairy products the overarching requirements are:

- The milk or the milk from which the dairy product is made must originate from country/zone recognized by the Office International des Epizooties (OIE) as foot and mouth disease-free, with or without vaccination.

- The animals must be clinically healthy at the time the milk was obtained.

Further detail on the requirements for the importation of dairy products from approved countries is provided at Appendix 2.

2. Processing

Microbiological hazards are controlled during dairy processing through the application of a combination of processing control measures. The effectiveness of these will depend on the initial microbial load in the raw milk and how effective primary production measures have been in preventing or minimising the presence and numbers of microbiological hazards. This section on processing identifies those microbiological hazards of most concern for raw milk products; the processing parameters (factors) that impact on their growth or survival, and the current requirements relating to dairy processing.

2.1 Microbiological hazards

Raw milk products may contain a variety of pathogens, derived from the raw milk and the processing environment (e.g. contamination during or post processing). As outlined in Section 1.1, those organisms more frequently associated with human illness linked to the consumption of raw milk products are:

- *Campylobacter* spp.
- *E. coli* spp.
- *L. monocytogenes*
- *Salmonella* spp.

More generally, dairy products are also commonly associated with staphylococcal food poisoning as a result of enterotoxin formation by *S. aureus*. These five pathogens are those that have primarily been assessed in FSANZ risk assessments of raw milk products.

2.1.1 Growth limits

A number of extrinsic and intrinsic parameters affect the growth and survival of microorganisms in food. These include temperature, pH, water activity, available nutrients and presence of antimicrobial compounds. The limits for growth of the pathogens identified above with respect to temperature, pH, and water activity are provided in Table 1.
Table 1: Limits for growth of selected pathogens (ICMSF, 1996)

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Temperature °C</th>
<th>pH</th>
<th>Water activity (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>optim</td>
<td>max</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>32</td>
<td>42-43</td>
<td>45</td>
</tr>
<tr>
<td>E. coli spp</td>
<td>7-8</td>
<td>35-40</td>
<td>44-46</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>-0.4</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>5.2</td>
<td>35-43</td>
<td>46.2</td>
</tr>
<tr>
<td>S. aureus (toxin production)</td>
<td>7</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>40-45</td>
<td>48</td>
</tr>
</tbody>
</table>

The values presented in Table 1 reflect the reported maximums and minimums in the scientific literature and have been established when other parameters were optimal. As one or more factors become limiting, this influences the other parameters (for example at low pH, the maximum temperature limit for growth may also be much less). Other considerations also include the type of acid present. For example the minimum pH limit reported may be when hydrochloric acid is used as the acidulant but when another acid such as lactic acid is used, the pH limit for growth may be much higher.

2.2 Processing factors

The manufacture of dairy products involves processes or effects conditions (e.g. pH, water activity) that impact on microbial growth or survival. Codex (Codex, 2004) has grouped such measures as microbiocidal or microbiostatic:

Microbiocidal control measures reduce the microbial load, for instance by killing, inactivation or removal. These may be applied during processing as processing steps (e.g. pasteurisation, thermisation) or after processing as intrinsic factors (e.g. ageing).

Microbiostatic control measures prevent, limit or retard the growth of microorganisms by chemical or physical means. These may be applied after milk production, during processing and after processing. They may be extrinsic factors (e.g. temperature) or be built into the product as intrinsic factors (e.g. pH, water activity).

Generally more than one control measure is needed to control microorganisms of concern (e.g. pasteurisation in combination with refrigerated storage). Combinations of measures (hurdles) can also be devised such that specific organisms can be reduced in number or can no longer grow or survive. In this way single microbiostatic control measures (such as pH, water activity, temperature) can be combined to provide a microbiocidal effect.

A discussion of the processing control measures of most relevance to raw milk products is provided below.
2.2.1 Pasteurisation and alternative technologies

Pasteurisation has traditionally been used as the key microbiocidal measure to control pathogenic microorganisms in dairy products through applying heat at a sufficient temperature and time to eliminate specified pathogens. For continuous flow systems, heating to 72 °C for 15 seconds has been validated as the minimum pasteurisation conditions for whole milk (63°C for 30 minutes for batch pasteurisation).

Non thermal technologies (e.g. high-pressure treatment, pulsed electric field, microfiltration etc.) are being investigated as an alternative to pasteurisation but to date have not been developed to a stage where they can replace heat processing as the single process to eliminate pathogens for milk and dairy products.

2.2.2 Thermisation

Thermisation is a heat treatment applied to milk, generally for cheese making, that is of a lower intensity than pasteurisation. It reduces the number of microorganisms but does not eliminate them (a general reduction of 3-4 logs can be expected). Any microorganisms surviving will be heat stressed and become more vulnerable to subsequent microbiological control measures such as ripening. Standard 4.2.4 currently permits a thermisation treatment for cheese production of 62°C for 15 seconds in combination with ripening for 90 days.

2.2.3 Curd cooking

The ‘cooking’ of cheese curd involves the application of heat for technical purposes such as promoting syneresis (expulsion of moisture from the curd). Generally the higher the curd cooking temperature applied, the lower the moisture content of the cheese being produced (the harder the variety). Depending on the temperature used, the heat treatment applied may reduce the level of microorganisms or stresses them to become more susceptible to other microbiological control measures.

2.2.4 Ripening

Ripening or ageing of cheese is defined by Codex as ‘the holding for such time, at such temperature, and under such conditions as will result in the necessary biochemical and physical changes characterising the cheese in question’. When used as a microbiocidal control measure, the combined effects of pH, decreased water activity, antagonistic flora and organic acids are used to influence the microenvironment in and on the food and impact on the composition of the microflora present. The decline of any pathogens present during this time will be influenced by the intrinsic characteristics of the cheese and the temperature of storage.

2.2.5 pH reduction

Fermentation or the addition of organic acids lowers the pH of the food matrix and impacts on the growth and survival of microorganisms. Most bacteria grow poorly at pH values below 5.0 and the effect of declining pH and increasing levels of organic acids can be inhibitory for pathogens. Microorganisms become more sensitive to other microbiological control measures at lower pH (synergy occurs with salt, water activity, lactoperoxidase system, organic acids, and antimicrobial substances).
2.2.6 Water activity

The ability of micro-organisms to grow or survive is largely dependent on available or accessible water in the food. This is referred to as water activity (a_w) expressed as the ratio of water vapour pressure in the food to that of pure water. Water activity can be controlled by:

- concentration, evaporation and drying
- salting (addition of sodium chloride)
- sweetening (addition of sugars).

2.2.7 Temperature and time

Maintaining product at low temperatures limits microbial activity (most microorganisms will not grow at refrigeration temperatures <5°C). When temperatures are lowered below the freezing point of the product not only is growth prevented but some microbiocidal effect may be provided.

Time can be used as a microbiostatic control measure through practices such as applying very short collection/storage periods, limiting the shelf life of products, or immediate processing of raw milk to ensure that all microorganisms present are in the lag phase (and therefore not active and more susceptible to other microbiological control measures).

2.3 Current requirements

Depending on the dairy product being manufactured, a number of microbiocidal and microbiostatic control measures may be implemented to prevent pathogen survival or growth. Standard 4.2.4 currently specifies that the processing of milk and dairy products (other than cheeses) must include pasteurisation (at 72 °C for 15 seconds) or an equivalent (validated) process. Clause 16 of this standard allows for a combination of other processing factors to be used in the manufacture of cheese including:

- thermisation in combination with ripening
- curd cooking in combination with ripening and water activity (expressed as moisture content).

Overarching these processing requirements is the requirement for dairy processing businesses to control potential food safety hazards by implementing a documented food safety program in addition to complying with the food safety requirements of Standard 3.2.2 and 3.2.3. Standard 3.2.2 – Food Safety Practices and General Requirements sets out specific food handling controls related to receipt, stage, processing, display, packaging, transportation, disposal and recall.

Other requirements of Standard 3.2.2 relate to:

- skills and knowledge of food handlers
- health and hygiene of food handlers
- cleaning, sanitising and maintenance of the food premises and equipment within the premises.
Standard 3.2.3 – Food Premises and Equipment sets out the requirements for food premises, fixtures, fittings, equipment and food transport vehicles.

These food safety requirements are generic and additional or more specific control measures may be required for managing the risks associated with raw milk products. For example, the permission for Roquefort cheese in Standard 4.2.4A specifies:

The following matters must be monitored and recorded during cheese production:

(a) pH during the acidification process; and
(b) salt concentration; and
(c) moisture content.

The establishment of microbiological and other processing criteria (e.g. time temperature parameters) for incoming raw milk may also need to be considered. For Roquefort cheese, testing of the raw milk for *L. monocytogenes* is specified.

2.3.1 Microbiological limits

Standard 1.6.1 - Microbiological Limits for Food currently specifies a number of microbiological limits for unpasteurised milk products including unpasteurised milk, butter made from unpasteurised milk and certain raw milk cheeses:

- limits for *Campylobacter*, coliforms, *E. coli*, *L. monocytogenes*, *Salmonella* and Standard Plate Count are specified for unpasteurised milk
- a limit for *Campylobacter* is specified for raw milk unripened cheeses (moisture content >50% with pH >5.0)
- limits for *L. monocytogenes* and *Salmonella* are specified for all raw milk cheese
- a limit for *E. coli* is specified for all cheese (including raw milk cheese)
- limits for *Campylobacter*, Coagulase positive staphylococci, coliforms, *E. coli*, *L. monocytogenes*, *Salmonella* and Standard Plate Count are specified for butter made from unpasteurised milk.

These limits will need to be revised in line with the product categories outlined in Section 2.

3. Consumer Awareness and Product Information

Evidence about consumer knowledge, motivations and behaviours plays a fundamental role in the risk analysis process. An enhanced understanding of who consumes raw milk products, why they are consumed and consumer’s knowledge of raw milk products can inform approaches to assess and manage the health and safety risks posed by their consumption, particularly in relation to product and consumer information needs.

There is a limited literature base on consumer attitudes, understanding, and consumption behaviour of raw milk products, particularly Australian data. It is recognised, however, that there is a demand for raw milk products in Australia, specifically raw drinking milk and raw milk cheeses, though the extent of this demand is unclear.
In order to gather Australian data, FSANZ commissioned a qualitative consumer study on raw milk behaviour and attitudes34. Findings from this survey and the published literature, and information from submissions received on the Discussion Paper for P1007 have provided qualitative data on consumer motivations, behaviours and knowledge in relation to raw milk products, outlined below. A summary of the key findings from the literature and the consumer survey is provided at Appendix 3.

3.1 Consumer motivations

The FSANZ Consumer study identified four raw milk consumer ‘segments’ based on variations in their motivations for consumption and triggers leading to that consumption:

- **Opportunists** (primary motivation is convenience, low cost and easy access)
- **Lifestylers** (consumption is part of a wider belief system e.g. organic or natural lifestyle)
- **Nutrition seekers** (based on perceived or promoted nutritional benefits of raw milk)
- **Health concerned** (as a response to a particular health concern).

The segments identified are comparable to those that have been reported internationally in the literature where the benefits reported by consumers included, taste, health, nutritional qualities, convenience and cost. The limitations of the consumer study did not permit the relative sizes of the segments to be determined nor to exclude the possibility of other segments not included here.

Another major benefit for participants was knowing the source of the milk they drank, and this was also an essential pre-requisite to consuming raw milk for many participants. They felt closer to the producer of the milk, reporting that they knew what the animals were fed, how they were looked after and other factors that were of interest and relevance to them.

In addition to the research undertaken, a large number of submissions were received on the Discussion Paper for Proposal P1007 that also identified consumer motivations. Many of these respondents wanted access to raw milk products because:

- they believe they offer significant health and nutrition benefits (mostly associated with raw bovine drinking milk)
- they have strong views around consumer choice and the right to be able to choose to consume raw milk products instead of conventional pasteurised milk products.

In relation to raw milk cheeses, other or additional motivations were elicited through submissions. The primary motivation for raw milk cheeses related to taste with consumers wanting access to these products because they consider them superior in quality (flavour, texture and taste profile). Additionally, having a greater choice of products available (a wider range of imported and locally produced cheeses) was raised as important.

34 A report \textit{Raw Milk and Consumer Behaviour and Attitudes} was prepared for FSANZ by Colmar Brunton Social Research and is available on the FSANZ website: http://www.foodstandards.gov.au/standardsdevelopment/proposals/proposalp1007primary3953.cfm
3.2 Consumer knowledge

Information on consumer knowledge/understanding of the nature of raw milk products and inherent risks associated with them was also gathered through the consumer study. It found that the main sources of information about raw milk are word of mouth and personal experience and observation. Additionally, a range of books and websites were referred to with the Weston A. Price Foundation being the single information source most specifically referenced.

Many participants in the FSANZ consumer study were aware of information promoting the dangers of raw milk. They largely considered this ill-informed at best, and malicious scaremongering at worst. Consumers considered that the warning labels on ‘pet milk’ and ‘bath milk’ indicating that it was not suitable for human consumption were a legal requirement rather than a legitimate warning. Many of the participants held detailed and specific knowledge and beliefs in relation to health and nutrition (discussed in Section 2 under Assessment of Consumer Issues).

3.2.1 NZFSA Market Research Survey

NZFSA commissioned a market research survey in 2008 to gain information on the public understanding of raw milk products. A particular focus of NZFSA study was to gather data on the effectiveness of NZFSA food safety initiatives on raw milk and raw milk products. The study also collected data on understanding of risks and terminology used on product packaging and in food safety educational materials.

In relation to understanding the term ‘raw milk’, the majority understood it to mean unpasteurised though nearly one third of respondents thought it meant fresh or milk in general. For labelling purposes, ‘unpasteurised’ was identified as a more useful and meaningful term than ‘raw milk’. Around one third of respondents considered unpasteurised milk cheeses/products were as safe to consume as pasteurised products.

3.3 Consumption behaviours

Consumer demand for raw milk products is primarily for raw drinking milk or raw milk cheeses. Consumption behaviours for these products are discussed below.

3.3.1 Raw drinking milk

Currently consumers are able to purchase raw goat milk in several states however there is anecdotal evidence that most demand for raw milk, particularly cow milk, is being met through unlicensed sources such as cow share schemes and the purchase of ‘pet milk’ and ‘bath milk’. This has been confirmed in a number of submissions to the Discussion Paper and the consumer study.

The consumer study reported that consumers of raw cow milk in metropolitan areas mainly sourced their milk through organic/health food shops where it is sold as ‘bath milk’ or ‘pet food’, and through growers or farmers markets. In regional areas these were less common sources, with study participants most commonly sourcing direct supplies of fresh milk from their own animal, from commercial dairies or from small producers. All raw goat milk consumers in the study obtained their milk from their own animals or direct from a small producer.

Some individual submitters to the Discussion Paper indicated that they were accessing raw cow milk by participating in ‘herdshare’ programs. Others stated they were buying ‘cosmetic’ or ‘pet food’ raw milk that is labelled as being not for human consumption.
The consumer study suggests that such warning labels on ‘bath milk’ and ‘pet food’ are being disregarded. Over 300 hundred submissions were received from consumers wanting to be able to access raw drinking milk.

Findings from the consumer study and the information provided in submissions substantiate that there is a demand for raw drinking milk, largely from individuals that perceive there are substantial health benefits. As part of the consumer study an online poll was carried out to gauge the prevalence of consumption of unpasteurised milk. The poll suggested that the prevalence of consumption was 0.7% and while this can only be considered indicative it is consistent with other international studies (Colmar Brunton, 2009). For example the prevalence of consumption estimated from food safety surveys in the United States suggests between 1-3% of the population may consume unpasteurised milk (Headrick et al., 1997; Altekruse, 1999; Zhang & Penner, 1999).

3.3.2 Raw milk cheese

The specialty cheese35 market has expanded considerably in Australia over the past 10 to 15 years and consumer interest in artisan cheeses has extended to raw milk cheese (indicated in submissions to FSANZ and through media coverage of this issue). There are currently only a limited number of raw milk cheeses available to consumers in Australia and these are imported products. Submissions received on the Discussion Paper indicate that consumers of specialty cheeses want to be able to access raw milk cheeses produced and traded internationally and support that such products should be able to be made locally.

Specialty cheeses are purchased and consumed differently to bulk produced cheddar and processed cheeses. They generally carry a price premium and are sold and consumed in smaller unit volumes. In the case of the imported raw milk cheeses currently permitted, consumers may pay in excess of $AUD100 per kilo (retail price) for some varieties. Such retail prices may also be achieved for certain specialty pasteurised cheeses, both imported and Australian. Consumers wanting such products may be more likely to be aware of or ask about the characteristics of the cheese they are purchasing, including whether it is made from raw milk.

3.4 Vulnerable groups

Risk management decisions take into account potential risks for the whole population as well as for sub-groups of the population that are at greater risk because of increased exposure or because of their health or immune status. There are population groups that are more susceptible or at greater risk of severe consequences of food-borne illness than the general population primarily because of their immune status. These are termed vulnerable populations and include:

- pregnant women
- children aged four years or less
- people aged 70 and over
- those people immunocompromised because of a medical condition or treatments they are taking (including people with HIV/AIDS, cancer, diabetes, liver or kidney disease, transplant recipients).

35 The term specialty cheese is generally used to refer to all cheeses other than bulk cheddar, mozzarella or processed cheese.
Risk management strategies for such groups have generally included advice (through fact sheets and technical papers) to avoid certain foods that are at higher risk of containing harmful levels of pathogenic microorganisms such as *L. monocytogenes* because of the severe outcomes, including death, which could result. In assessing the risks associated with raw milk products, the general population as well as vulnerable populations are considered.

Risks associated with raw milk products can be higher for vulnerable groups, particularly for the hazards EHEC and *L. monocytogenes*. Age is the most consistent risk factor for susceptibility to complications resulting from EHEC infection. Such complications include haemolytic uraemic syndrome (HUS) which can result in renal failure and has a case-fatality rate of 3% to 7%. Children less than 5 years and adults older than 65 years are at a greater risk of developing HUS.

Groups with compromised immune systems such as pregnant women and their foetuses, neonates, the elderly, transplant patients, patients on corticosteroid treatments, HIV/AIDS patients and alcoholics are those at risk for invasive listeriosis. Listeriosis may result in septicaemia, meningitis, encephalitis, and intrauterine or cervical infections in pregnant women which may result in spontaneous abortion or still birth. Based on OzFoodNet data from 2002 to 2007 (OzFoodNet, 2008), the case mortality rate in Australia has varied from between 12% to 25%.

Submissions received on the Discussion paper for P1007 indicate that raw drinking milk is being provided to/consumed by vulnerable groups such as young children and pregnant women. The consumer study suggested that unpasteurised milk was fed to infants and children, however unpasteurised goat milk was more likely to be fed to infants and children because of perceived benefits relating to allergies or lactose/digestive issues (discussed in Section 2 under Assessment of Consumer Issues).

3.5 Product information

There should be adequate information available to consumers to ensure food products are handled, displayed, stored and prepared correctly and safely. Labelling of packaged foods is an important means of achieving this but its effectiveness is dependent on a range of factors. The salience of safety (or other) information to the consumer is an important factor influencing the extent to which they respond to it.

Labelling which is specifically directed to addressing health risks includes mandatory warning and advisory statements. Other labelling that is relevant to addressing health and safety risks includes storage and use instructions and date marking.

3.5.1 Mandatory warning and advisory statements

Standard 1.2.3 – Mandatory Warning and Advisory Statements and Declarations requires warning statements or advisory statements to be used on a food label or in association with the display of the food if the food is not required to bear a label. Warning statements and advisory statements are used for different purposes.

Mandatory warning statements are used where the risk to public safety is potentially life threatening and it can be reasonably assumed that the general population or the specific target group is unaware of the potential safety risk. Currently, the Code only requires a warning statement for food containing royal jelly.

Mandatory advisory statements are used where the general population or a sub-group of the population is exposed to a health and safety risk but the risk is not life threatening, or when guidance about a food is needed to maintain public health and safety.
There are currently a number of mandatory advisory statements for foods including unpasteurised milk and liquid milk products (although these are not permitted under current processing requirements). Unpasteurised milk requires a statement to the effect that the product has not been pasteurised.

Jurisdictions that permit the sale of unpasteurised goat milk may require a labelling statement on the product such as ‘Caution – this milk is an unpasteurised product and may contain organisms that could be injurious to health’.

3.5.2 Directions for use and storage

Standard 1.2.6 – Directions for Use and Storage requires that either directions for use and/or directions for storage of food is to be included on the label where, for reasons of health and safety, the consumer should be informed of specific requirements. Examples of such directions include ‘refrigerate after opening’, ‘cook thoroughly before consumption’ or ‘refrigerate at or below 4°C’. Currently directions are required for two specific foods in the standard, bamboo shoots and sweet cassava, to the effect that they should be fully cooked before consumption.

3.5.3 Date marking

Standard 1.2.5 – Date Marking of Food requires food (with some exceptions) to be date marked. A use-by date is required where food should be consumed before a certain date (provided it has been stored in accordance with any stated storage conditions) because of health or safety reasons. This may apply to chilled ready-to-eat foods because of the potential for pathogens (such as *L. monocytogenes*) to be present and grow at refrigeration temperatures to harmful levels before the food has noticeably spoiled.

3.6 Consumer information

To support risk management tools such as labelling or as part of a risk management strategy (e.g. listeria advice to people at risk), information and/or advice to consumers may be provided in the form of fact sheets, technical papers, web-based information or public forums.

Particular information or advice may include:

- information to the community about safe handling and adequate preparation of a product;
- information to at-risk groups about safe eating practices (e.g. listeria advice to people at risk; and/or
- information on how to use food labels effectively.

Consumer information needs will be considered alongside proposed risk management options for raw milk products.
SECTION 2: Product Categorisation and Risk Assessment

1. Risk Management Framework

In order to assess risk management options for raw milk products they have been categorised into one of three categories based on the likelihood that pathogens may be present and the potential public health risk posed. These categories are defined in terms of the effect processing factors and intrinsic characteristics of the final product have on pathogen survival and growth:

Category 1 products are defined as those products where:
- intrinsic characteristics and / or
- processing factors
eliminate pathogens that may have been present in the raw milk.

Category 2 products are defined as those products where:
- intrinsic characteristics and / or
- processing factors
may allow the survival of pathogens that may have been present in the raw milk but do not support the growth of these pathogens.

Category 3 products are defined as those products where:
- intrinsic characteristics and / or
- processing factors
are likely to allow the survival of pathogens that may have been present in the raw milk and may support the growth of these pathogens.

Given the increased potential for pathogens to be present, the food safety risk associated with each category increases from Category 1 to Category 3.
The further refinement of definitions, including the parameters and or processing factors that underpin each category and allow for individual products to be categorised are discussed below. While cheese is the primary raw milk product in international trade and has been the main focus of assessment work, category definitions and outcomes will be developed to apply to other products as appropriate.

2. Category 1

Category 1 products have been defined as those where intrinsic characteristics and/or processing factors eliminate pathogens that may have been present in the raw milk. **Eliminate** means the process\(^{36}\) will achieve an overall reduction of at least 5 logs\(^{37}\) (net reduction) of the specified pathogens. Outside of pasteurisation, there are currently two sets of requirements in the Code that would be captured under this definition: thermisation (in combination with storage) for cheese processing and processing requirements very hard grating cheeses. In addition, permissions for Emmental, Gruyere and Sbrinz cheeses were approved based on the processes used being able to eliminate pathogens of concern. These Swiss cheeses and the very hard grating cheeses will be collectively referred to as cooked curd cheeses.

2.1 Thermisation

Standard 4.2.4 allows for a lower heat treatment (than pasteurisation) in combination with a minimum ripening period to be used for the processing of cheese:

> …by being held at a temperature of no less than 62°C for a period of no less than 15 seconds, and the cheese or cheese product stored at a temperature of no less than 2°C for a period of 90 days from the date of processing;

The effectiveness of this processing requirement in eliminating pathogens depends on the log reduction provided by the temperature time treatment of the milk in combination with the expected die off during the ripening process. A comparison of the pathogen kill achieved by a range of sub-pasteurisation temperatures (at 16.2 seconds) is provided in Table 2.

The current temperature limit for thermisation in the Code is in the lower range of those used internationally. In New Zealand, for example, the thermisation requirements are 64.5°C for 16 seconds with storage at not less than 7°C for no less than 90 days from date of processing. The data presented in Table 2 shows that temperature treatments of 64.5°C and greater (for 16 seconds) provide a greater than 3 log reduction for all of the pathogens listed. It is proposed that Australian and New Zealand thermisation measures are aligned and the current limits in the Code are amended.

\(^{36}\) From the start of production until the product is considered ready for consumption/sale. For example, for a cheese this would mean at the end of the ripening period.

\(^{37}\) Pasteurisation is generally accepted as being able to achieve at least a 5 log reduction of pathogens and this level of reduction has been used as the benchmark for evaluating raw milk cheese processes in previous assessments (such as for very hard grating cheese).
Table 2. Pathogen kill at thermisation temperatures using a turbulent-flow pasteuriser with a holding time of 16.2 seconds [after Pearce (2003, 2004)∗]

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>No. of strains used</th>
<th>Log-kill at specified temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60°C</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>10</td>
<td>No change</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>15</td>
<td>4-5</td>
</tr>
<tr>
<td>Campylobacter spp.</td>
<td>15</td>
<td>4-5</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>7</td>
<td>3-5</td>
</tr>
<tr>
<td>Salmonella seftenberg</td>
<td>2</td>
<td>2-3</td>
</tr>
</tbody>
</table>

* Sources of original data cited by Pearce: D’Aoust et al. (1987, 1988); Farber et al. (1988).

2.2 Cooked curd cheeses

Cooked curd cheeses include those very hard cheese varieties where the curd is heated to elevated temperatures (defined as > 48°C) during processing and include very hard grating cheeses, Swiss Gruyere, Emmental and Sbrinz. The scientific assessments undertaken for cooked curd cheeses manufactured from raw milk established whether a 5 log reduction of the pathogens of concern could be achieved, taking into account initial load, possible growth during milk warming, reduction during curd cooking and during maturation. The assessments concluded that the key microbiocidal control measures for these cheeses were:

- curd cooking
- ripening (in combination with a low moisture environment)

2.2.1 Curd cooking

Curd-cooking at elevated temperatures has the greatest effect on reducing numbers of pathogens that may be present in the curd.

The maximum temperature for growth for most pathogens is 45-48°C, therefore curd cooking at temperatures 48°C and above will begin to have a lethal effect. Curd cooking at temperatures in excess of 55°C for periods greater than 40 minutes, such as in the manufacture of some extra hard and Swiss cheeses, is sufficient to significantly decrease (> 3 logs) the numbers of pathogens that may be present in raw milk. Any surviving micro-organisms are stressed and become more susceptible to other microbiological control measures (e.g. ripening).

2.2.1 Ripening

Conditions during maturation can result in a combination of hurdles which are sub-optimal for pathogenic bacteria.

The combined effects of low pH, high salt, reduced moisture and ripening temperature come into play and promote the die off of pathogens that may be present. For very hard grating cheeses, inactivation of pathogens continues throughout ripening (providing the pH is 5.5 or less) and reductions of >5 log occur when ripening extends beyond 3 months regardless of the curd cooking temperature (FSANZ, 2009c). For the Swiss cheeses assessed it was concluded that any surviving pathogens would not survive ripening and storage (>3 log reduction). A minimum storage time for these cheeses was 120 days and moisture content <39%.

2.3 Category 1 parameters

For other dairy products to be considered under Category 1, evidence that the control measures (microbicidal or microbiostatic) used in production can achieve a 5 log reduction of pathogens would need to be provided. For cheese production, the processing factors and intrinsic characteristics that have been identified in addition to pasteurisation for meeting Category 1 requirements include:

1. Thermisation of milk at 64.5°C for 16 seconds in combination with a storage period of at least 90 days at no less than 7°C.
2. Curd cooking at elevated temperatures (>48°C) in combination with a storage period of at least 120 days at no less than 10°C. The final product moisture content must be less than 39%.

As the processing factors and product characteristics must provide for a 5 log reduction of pathogens, no additional on farm requirements for raw milk for processing are recommended (i.e. beyond those already required by Standard 4.2.4).

3. Category 2

Category 2 products have been defined as those products where intrinsic characteristics and/or processing factors may allow the survival of pathogens that may have been present in the raw milk but do not support the growth of these pathogens. Survival means there should be no net increase from receipt of milk to the end of processing. No growth means that there should be no measurable increase (less than log 0.5) of pathogens in the final product to the end of shelf life.

3.1 Roquefort cheese

The Code currently permits one raw milk cheese that fits Category 2 – Roquefort cheese. The safety assessment\(^{39}\) for this cheese determined that the key processing factors that controlled pathogens were:

- the rapid acidification of the milk during the initial phase of cheese manufacture (i.e. drop in pH from 6.5 to <5.0 within 6 to 8 hours and then to pH 4.8 within 24 hours)
- desiccation of the curd during subsequent processing stages (i.e. a final water activity of approximately 0.92)

\(^{39}\) The scientific evaluation of Roquefort cheese is provided in the Final Assessment Report for Application A499 To Permit the Sale of Roquefort Cheese, available on the FSANZ website at: http://www.foodstandards.gov.au/_srcfiles/A499_Roquefort_FAR_FINALv2.pdf#search=%22A499%22
• prolonged ripening (i.e. >90 days).

The microbiological status of the incoming raw milk was also a critical factor in this determination, noting that it must meet stringent microbiological testing including no detected levels of *L. monocytogenes*. If pathogens were present at low levels, it was concluded that during the manufacture of Roquefort cheese they would be unlikely to survive or proliferate:

• *B. melitensis*, *C. burnetii* and *C. jejuni* are eliminated during cheese making and maturation

• if low levels of *Salmonella*, EHEC, *Listeria* and *S. aureus* were present in raw milk, conditions during cheese making and maturation make it unlikely they would survive or proliferate

• *L. monocytogenes* is unlikely to grow in Roquefort cheese during maturation and subsequent storage.

The processing factors, including intrinsic characteristics, that could be applicable for Category 2 products generally (cheese and other products) are discussed below.

3.2 Processing factors

3.2.1 Cheese

The ability of pathogens to survive and/or grow in cheese is largely dependent on:

• the extent of acidification by the starter culture

• ripening conditions (in combination with the intrinsic characteristics of the cheese, in particular its salt-in-moisture and pH).

The amount of heat applied at various stages during the manufacture will also impact on levels that may be present. When milk is warmed to setting temperatures between 30 – 35 °C (for example), pathogens that may be present can grow. The curd cooking temperatures that are then used may be microbiocidal (as for hard cooked cheeses), microbiostatic or favourable for growth, noting that the growth of the starter culture and production of lactic acid during this time will become inhibitory.

Taking into account the potential for some growth during the initial phase of manufacture, the combination of controls for Category 2 cheeses must not only limit growth but need to provide for a reduction in levels in order to have no net increase (survival) of pathogens during processing. This reduction is primarily achieved during ripening. The intrinsic characteristic of the final product must then be such that pathogen growth is not supported.

3.2.1.1 Acidification

The production of acid at the appropriate rate and time is critical for the cheese-making process and to ensure the microbiological safety of the final cheese. Acid production and the resultant decrease in pH affects the growth of many non-starter bacteria, including pathogens which may be present in the raw milk. During the first 24 hours (including the early stages of ripening), the production of lactic acid by the starter culture is important in limiting the growth of pathogenic bacteria that may be present.

40 For rennet coagulated cheese, milk is warmed before the addition of starter culture and rennet to a temperature and for a time that will optimise the coagulation of the milk and formation of the curd.
The use of an active starter culture that achieves a rapid pH drop within the first six hours and total drop within 24 hours of fermentation is a critical control in cheese production. A ‘rule of thumb’ is that the culture should be able to produce acid to achieve pH<5.3 in milk in six hours at 30-37°C (depending on cheese variety) (Fox et al, 2004).

3.2.1.2 Ripening

Inhibition of microorganisms during ripening results from the combined effects of pH, decreased water activity (related to salt content), antagonistic flora and organic acids. These are not static and vary during the ripening period as moisture is lost, salt diffuses through the curd and other biochemical changes occur. Of the factors that influence microbial growth or survival, pH and water activity (represented as salt in moisture) have been identified as the main parameters for determining whether growth or no growth (inhibition) will occur.

- **pH**

The pH of cheese curd after manufacture generally lies within the range 4.5-5.3. For mould and smear ripened cheeses, however, the pH increases during ripening due to the growth of yeasts and moulds. For blue cheeses the pH may increase to 6.0-6.5 during ripening and storage (>90 days) while for surface ripened mould cheeses (such as camembert and brie) the pH increases to around 7.0.

- **water activity/salt-in-moisture**

The concentration of salt-in-moisture has a major effect on the growth of microorganisms in and on cheese. In general, the longer the ripening period the lower the moisture content of the cheese and the resultant water activity due to the salt content. The level of salt used depends on the variety and varies from 0.7-7%. As an example, blue cheeses are among the most heavily salted varieties at around 3-5% NaCl. A blue cheese with salt level of 4.5% will have a corresponding salt-in-moisture level of 10.5%.

For most cheese varieties salt is added after curd formation through brining or dry salting. While salt absorption into the cheese can occur fairly rapidly, salt diffusion in cheese moisture is a slower process. Depending on the variety it may take days or weeks to obtain salt in moisture equilibria throughout the cheese mass.

- **Predicting pathogen growth based on intrinsic cheese properties**

Cheese will have varying intrinsic characteristics depending on its variety and particular manufacturing protocol. One approach to predict whether pathogens will grow or not grow (decrease in numbers) in a cheese is to determine a growth/no growth boundary for pathogens based on the intrinsic properties of the cheese – for example salt in moisture, pH, etc using data from the literature and other sources. This approach will be further examined during the assessment of Proposal P1007 to determine appropriate combination of intrinsic parameters for Category 2 cheeses.

3.2.2 Other products

While manufacturing protocols for dairy products other than cheese have not been assessed, there are a number of individual parameters that have been identified as preventing the growth of pathogens:\(^\text{41}\):

- water activity below 0.92

\(^{41}\) Water activity and pH limits are sourced from ICMSF (1996), based on the most resistant pathogen.
• pH below 4.4
• NaCl in solution >10%.

Dairy products with these individual intrinsic characteristics would not support the growth of pathogens. These are extreme limits and, as for cheese, combinations (e.g. pH and water activity) at lower/higher levels may also be inhibitory. Additionally, the manufacturing process used must include appropriate bactericidal or bacteriostatic controls so that there is no net increase of any pathogens during manufacture. For other products to be considered within Category 2, evidence that the production process would not allow for the survival of pathogens and that the final product does not support their growth would need to be provided.

3.3 Raw milk quality

The primary source of contamination in raw milk products is from the raw milk itself. For Category 2 products the raw milk to be used should not have detectable levels of pathogens (as appropriate for each pathogen of concern) to ensure there is no survival by the end of manufacture. This means, as outlined in Section 1.3, that greater stringency of measures would be required during primary production to manage the specific risk factors on farm for raw milk contamination.

3.4 Category 2 parameters

For products to be considered under Category 2, evidence would need to be provided that the production process would not allow for the survival of pathogens and that the final product does not support their growth.

Additionally, raw milk for the production of Category 2 cheeses would be required to meet a higher level of microbiological quality achieved through additional on farm control measures.

For cheeses the processing factors and intrinsic characteristics that have been identified for cheeses to meet Category 2 requirements include:

- the use of an active starter culture to achieve rapid acid production and pH drop
- pH/salt in moisture profile that will not support the growth of pathogens (to be elaborated further in the 2nd Assessment Report following additional work)
- minimum ripening period (e.g. 90 days) and temperature.

4. Category 3

Category 3 products have been defined as those products where intrinsic characteristics and/or processing factors are likely to allow for the survival of pathogens that may have been present in the raw milk and may support the growth of these pathogens. This means that the bactericidal or bacteriostatic controls used during processing would not be sufficiently inhibitory for preventing pathogen survival and the characteristics of the final product (pH, moisture/water activity etc.) would not prevent growth. In effect, the primary control for Category 3 products is the microbiological status of the raw milk for processing.

42 Given the limitations of analytical testing, no detectable level does not mean absence in the entire batch of milk. The processing factors and intrinsic characteristics of Category 2 products should be adequate to control very low levels of contamination.
There are no parameters for defining Category 3 products – they are essentially those dairy products that do not meet the requirements for Category 1 or 2. For cheeses this would include varieties which have a higher moisture and pH profile and can support the growth of pathogens (such as soft mould ripened cheeses). Raw drinking milk is also a Category 3 product.

5. Level of risk associated with product categories

A wide range of microbiological hazards may be associated with raw milk. If these hazards are unmanaged, raw milk poses a high level of risk to public health and safety. Pasteurisation has been the most effective control measure for eliminating pathogens that may be present in raw milk, contributing to the very low level of risk associated with the consumption of dairy products in Australia.

The framework developed for assessing raw milk products groups them according to key characteristics that will eliminate, reduce or permit growth of pathogens. If processing controls were not in place, products across all Categories would present a high public health and safety risk. In certain cases this level of risk can be reduced to an acceptable level (i.e. low risk) through implementation of specific production and processing controls.

The Microbiological Risk Assessment of Raw Milk Cheese has been used to help identify the factors that have the greatest contribution to pathogen control during cheese manufacture and the key parameters for determining pathogen reduction, and conditions for growth and no growth. Risk assessments have also been undertaken for raw goat milk and raw cow milk that highlight the milk production factors that impact on the prevalence of pathogens in raw milk as well as the risk associated with the consumption of raw drinking milk.

5.1 Category 1

Dairy products considered within Category 1 must have undergone processing conditions and/or have intrinsic characteristic that provide for the elimination (≥5 log reduction) of pathogenic microorganisms. By definition the risk presented by such products is very low. A qualitative risk assessment undertaken for raw milk extra hard cheeses and cooked curd Swiss cheeses within the Microbiological Assessment of Raw Milk Cheese supports a very low risk for both the general and susceptible population groups where production includes:

- curd cooking at high temperatures (>48°C)
- ripening (in combination with a low moisture environment).

5.2 Category 2

The Microbiological Risk Assessment of Raw Milk Cheese qualitatively determined the level of risk for a number of selected cheese styles (cheddar, blue, feta, camembert) based on probabilistic modelling. The risk levels determined were very conservative due to the data gaps and assumptions made and cannot be directly ascribed to a product category. What the modelling indicated, however, is the importance of pH and salt in moisture parameters in determining whether pathogens survive or grow and, therefore, the level of risk presented. These parameters will be further investigated to inform the boundary between Category 2 and 3 products. The modelling also indicated the limited information available in published challenge studies on the behaviour of pathogens in cheese.

The key conditions/parameters identified for controlling pathogens in cheeses under Category 2 include:
• the use of milk produced to a stringent level of microbiological quality;
• rapid acidification
• a minimum ripening period and temperature
• an inhibitory pH/salt in moisture profile.

Where such controls can be met the risk to public health is low, (as determined in the assessment for Roquefort cheese) for both general and susceptible population groups.

5.3 Category 3

By definition there are no or limited processing factors to prevent survival of pathogens in Category 3 dairy products and their intrinsic characteristics may support pathogen growth. The microbiological status of the raw milk, dependent on the management of risk factors on farm, is therefore a critical control.

The microbiological quality of milk is influenced by a combination of management and control measures along the entire dairy supply chain. The main risk factors identified for raw milk contamination include:

• animal production practices: health status, housing, herd size, feed, water, waste management
• milking practices: mastitis control measures, teat washing and drying, stripping of foremilk, equipment cleaning and maintenance
• chilling and storage, including maintenance of the cold chain.

Implementing practices to reduce the pathogen load in the farm and dairy environment and improving hygienic control over milk harvest may reduce the level and frequency of milk contamination but are not elimination measures. The probabilistic modelling undertaken for the Microbiological Risk Assessment of Raw Cow Milk indicates that even when there is low pathogen prevalence in the dairy herd and a low level of bulk milk contamination (below the level of detection) cases of illness from Campylobacter spp., EHEC, Salmonella spp. and L. monocytogenes can be expected. No measures have been identified that would assure 'pathogen free' milk.

Category 3 products present a medium to high level of risk (depending on the pathogen) to both general and susceptible population groups because there are no measures to ensure pathogens are not present in bulk milk nor can subsequent handling and processing prevent survival and growth. The severity of illness that results from enterohaemorrhagic E. coli infection is a significant contributor to the level of risk for Category 3 products. Additionally, L. monocytogenes presents a high risk in these products for vulnerable groups.

6. Control measures

The parameters developed for Category 1 and 2 products reflect a combination of processing measures and product characteristics that are essential to the control of pathogens in these products. For Category 2 products, additional requirements on the raw milk for processing would also be required to ensure microbiological hazards can be managed.
A step by step hazard analysis (microbiological) of cheese processing and on-farm milk production has been undertaken to identify more specifically the additional control measures that would be required to support the manufacture of Category 1 and Category 2 raw milk products to provide for a low level of risk. This process has taken into account the primary production and processing factors impacting on pathogen contamination; current requirements in the Code, and additional provisions for raw milk products recommended by Codex. The identified control measures for milk production and processing are provided at Appendix 4 and 5.

Control measures for Category 3 products have not been elaborated as there are no further controls for milk production or processing than those identified for Category 2 products.

6.1 Milk production

The Table in Appendix 4 identifies the control measures and supporting requirements (e.g. skills and knowledge) for raw milk production in relation to those primary production factors identified as impacting on routes of contamination for microbiological pathogens. The measures included in the table consist of baseline control measures (those currently implemented for milk being produced for further processing including pasteurisation) and recommended additional measures for milk being produced for the processing of Category 2 products. No additional controls for milk production are required for Category 1 products.

6.2 Cheese processing

The table in Appendix 5 identifies the control measures required for raw milk cheese processing at key steps in production to prevent or minimise the microbiological hazard or risk presented. The measures included in the table consist of baseline control measures (those that are applicable to cheese production generally) and recommended additional measures for Category 1 and Category 2 products. The key steps in production include:

- raw milk receipt and storage
- milk standardisation
- milk pre-heating/warming
- acidification and coagulation
- curd production
- curd processing
- moulding/pressing
- salting
- ripening/maturation
- packaging
- storage/distribution/retail

While the table has been developed specifically for cheeses, the same controls could apply to any other cultured product, omitting those processing steps which are not relevant.

7. Assessment of Consumer Issues

7.1 Assessment of the potential health benefits associated with raw milk

A large number of submitters to the Discussion Paper stated that there are health benefits associated with the consumption of raw milk that should be taken into account in assessing Proposal P1007 and cited literature to support these claims. The following health benefits and nutritional outcomes were raised:
• There is an association between raw milk consumption and reduced allergy development during childhood.

• There is an association between raw milk consumption and a reduced risk of cardiovascular disease.

• The consumption of raw milk improves growth and development in children.

• Raw milk has a higher vitamin C content than pasteurised milk, and thus protects against scurvy.

• Pasteurisation destroys or decreases the content of vitamin A, B vitamins, vitamin D, and iodine in milk.

• Pasteurisation reduces the availability of folate and/or calcium from milk.

To address the claims made, FSANZ reviewed the literature cited by submitters in support of their comments to determine whether this evidence is of sufficient quality (taking into account study design and methodology; purpose and context of the study; statistical evaluation and epidemiological evidence) to validate the stated health outcomes.43

The Assessment of the Potential Health Benefits with Raw Milk found that the majority of cited literature was insufficient to support the health benefits and nutritional outcomes claimed. The only exception was for the relationship between raw milk consumption and reduced allergy sensitisation during childhood, where a substantial body of well designed studies was presented. Because these studies were well designed, FSANZ conducted a more thorough review of the science regarding the relationship between raw milk consumption and allergy sensitisation.

7.1.1 Allergy sensitisation

A review of the science showed there is some indication for a weak association between the consumption of raw milk during early childhood and a lower prevalence of allergies later in life. However there are substantial limitations within the evidence base, most notably that the protective associations observed are inconsistent and not always statistically significant. The available evidence also indicates that raw milk consumption is not the only explanation for the reductions in allergy prevalence that have been observed and that other factors associated with a rural lifestyle could explain the observed protection against allergy development. In general, the findings of the studies on allergy sensitisation are consistent with a broader prevailing theory that there is a protective effect from a rural lifestyle.

It is concluded that a specific role for raw milk consumption in the protection against allergy sensitisation has not yet been established in the currently available scientific literature.

7.2 Nutritional claims

A number of submissions made comments that the nutritional profile of raw milk is superior to pasteurised milk. Milk itself is one of the most complete of all foods, containing nearly all the constituents of nutritional importance to humans. Pasteurisation does not impact on the nutritional importance of milk products in the Australian diet.

43 The FSANZ Assessment of the Potential Health Benefits with Raw Milk is available on the FSANZ website http://www.foodstandards.gov.au/standardsdevelopment/proposals/proposalp1007primary3953.cfm
They are the richest source of calcium in the Australian diet and are important contributors to protein, vitamin A, riboflavin, vitamin B\textsubscript{12}, zinc and iodine.

Results from the 1995 National Nutrition Survey (NNS) showed pasteurised milk to be a major contributor of a variety of nutrients in the Australian diet:

- milk provided the greatest contribution to calcium intake across all population groups, ranging from 29% to 44% of total intake
- milk provided the greatest contribution to phosphorous and riboflavin intake in the population, contributing up to 25% and 30% respectively
- milk was a major contributor to protein, magnesium, zinc, potassium and retinol intakes. The contribution of milk to retinol intake was greatest in children aged 2-11 years, providing up to 27% of retinol intake.

Subsequent work in the 22nd Australian Total Diet Study (ATDS) showed milk to also be a major source of iodine for Australian children & adults. Milk was found to contribute between 35% and 64% of total iodine intake, with the greatest contribution to intake in children aged 2-3 yrs.

The release of the findings of the 2007 Australian National Children’s Nutrition and Physical Activity Survey (\textit{Kids Eat Kids Play}) has shown there is no substantial change in the intake of milk and its nutrition contribution in the diets of Australian children since the 1995 Australian and 1997 New Zealand National Nutrition Surveys.

Milk is not a major contributor to vitamin C intake, with other foods (e.g. fruits and vegetables) acting as more important sources of this nutrient.

7.3 Milk allergies and lactose intolerance

A number of submissions and responses to the Consumer Study indicate that many people have a misunderstanding of or misinformation relating to the issue of food allergy and intolerance. For example, there is a belief among some respondents that milk allergy is associated with pasteurised milk and that symptoms reduce or disappear by drinking raw milk. In addition, there is confusion between food allergy and food intolerance and that these are only associated with cow’s milk.

7.3.1 Milk allergy

Milk allergy is an immune response where the body’s immune system reacts to one or more of the milk proteins. Symptoms may include hives, eczema, face swelling, diarrhoea and noisy breathing. Like other allergens, milk can cause anaphylaxis, a severe and potentially fatal allergic reaction.

Treatment of allergy associated with cow’s milk and dairy products involves avoidance or elimination of these foods from the diet. The proteins that may be responsible for triggering an allergic response are a normal constituent of the raw milk. As for other food allergens, heat treatment and other processing does not change the allergen potential of the proteins present. Therefore milk allergic individuals will have an allergic reaction to raw or heat treated milk.
It has been raised that goat milk may be used as a substitute to cow milk in the case of milk allergy. While there are differences in the proteins present in goat and cow milk, most people allergic to cow’s milk will also be allergic to goat’s milk and similar symptoms will be triggered (ASCIA, 2007). As allergies can be life threatening, a medical practitioner should be consulted for proper diagnosis and treatment.

7.3.2 Milk intolerance (lactose intolerance)

Some individuals may not be able to tolerate milk and milk products in their diet, which is different from milk allergy. Lactose intolerance is a metabolic disorder resulting from a person’s inability to completely digest lactose (the sugar in milk). Symptoms may occur within an hour of ingestion or may take a day or more to develop and include abdominal pain, abdominal swelling, flatulence and diarrhoea. The amount of lactose that can be tolerated before symptoms arise will vary from person to person. Managing lactose intolerance involves establishing the level of lactose that can be tolerated and adjusting the serves consumed of lactose containing foods so that this level is not exceeded. A medical practitioner should be consulted for proper diagnosis and management.

Lactose is present in all milks. Cow milk and goat milk typically have similar levels of lactose and therefore management of lactose intolerance is not simply a matter of substituting one milk type for another. For those with lactose intolerance, the level of lactose consumed needs to be managed from all dairy sources through consuming products with low lactose (such as cheese or lactose modified milks) and/or restricting the number or size of serves of dairy foods consumed.

7.3.2.1 Goat milk digestibility

There is anecdotal evidence that some people find goats milk easier to digest however this is being confused with not causing intolerance or allergy. Compared to cow milk, goat milk does have lower levels of the protein alpha s1-casein (a protein involved in curd formation), contains smaller fat globules and lacks agglutinin which causes fat globules to cluster together. Collectively these factors may contribute to increased digestibility (the ease and completeness of digestion). Digestibility, however, is a separate issue to milk allergy or lactose intolerance – goat milk, as do all milks, contains lactose and proteins that may be allergenic for some people whether the milk is raw or pasteurised.

44 ASCIA is the peak professional body of Allergists and Clinical Immunologists in Australia and New Zealand – Website: http://www.allergy.org.au/
Appendix 1

Codex Code of Hygienic Practice for Milk and Milk Products –

Excerpts of additional provisions that specifically apply to the production and processing of milk used for raw milk products:\(^{45}\):

ANNEX 1: GUIDELINES FOR THE PRIMARY PRODUCTION OF MILK

3.2.1 Areas and Premises for Milk Production

3.2.1.2 Milking area and related facilities

Only potable water can be used in milking areas, product storage areas and other critical areas.

3.2.2 Animal Health

The milk cannot carry unacceptable levels of zoonotic agents. Therefore, the milk shall originate from individual animals:

- that are identifiable such that the health status of each animal can be followed. To this effect:
 - the herd shall be declared to the competent authorities and registered;
 - each animal shall be identified with a steadfast device and registered by the competent authorities.

- that do not show visible impairment of the general state of health and which are not suffering from any infection of the genital tract with discharge, enteritis with diarrhoea and fever, or recognisable inflammation of the udder;

- that do not show any evidence (signs or analytical results) of infectious diseases caused by human pathogens (e.g. Listeriosis) that are transferable to humans through milk including but not limited to such diseases governed by the OIE International Health Code;

- that, in relation to brucellosis and tuberculosis, shall comply with the following criteria:
 - cows milk shall be obtained from animals belonging to herds that are officially free of tuberculosis and brucellosis in accordance with the relevant chapters of the OIE International Animal Health Code;
 - sheep or goat milk shall be obtained from animals belonging to sheep or goat herds that are officially free or free of brucellosis as per the OIE International Animal Health Code;
 - when a farm has a herd comprised of more than one species, each species shall comply with sanitary conditions that are mandatory for each particular species;
 - if goats are in the same environment with cows, goats shall be monitored for tuberculosis.

\(^{45}\) The full Code of Hygienic Practice for Milk and Milk Products can be accessed through the Codex Alimentarius website www.codexalimentarius.net
In addition, it is necessary that the milk also be checked for other relevant aspects in accordance with point 5.2.3.1 (microbiological and other specifications) which can have an impact on the safety and suitability of raw milk products; these results may provide information regarding the health status of the animals.

In particular, preventive measures are needed to prevent disease including:

- animals of unknown health status shall be separated, before being introduced in the herd, until such time that their health status has been established. During that separation period, milk from those animals shall not be used for the production of milk for the manufacture of raw milk products;

- the owner shall keep a record of relevant information, e.g., results of tests carried out to establish the status of an animal just being introduced, and the identity for each animal either coming or leaving the herd.

3.2.3 General Hygienic Practice

3.2.3.1 Feeding

When using fermented feed, it is necessary that the feed be prepared, stored and used in a manner that will minimise microbial contamination. Particular attention shall be given to compliance with good practices concerning the following aspects:

- the design of silos;

- good production practices of silage

- regular check of the quality of the fermented feed (organoleptic inspection or pH).

The owner shall keep a record of relevant information concerning feed.

3.2.4 Hygienic Milking

3.2.4.3 Milking equipment cleaning and disinfection

Only potable water can be used in contact with milking equipment and other milk contact surfaces.

3.3.2 Milk Storage Equipment

Milk tanks and cans can be used only to store milk and milk products.

3.3.3 Premises for, and Storage of, Milk and milk-related Equipment

When milk for further processing is not collected or used within 2 hours after milking, it shall be cooled:

- to a temperature equal to or below 6°C when collected on a daily basis; or

- to a temperature equal to or below 4°C when not collected every day.
Deviations from those temperatures may be acceptable if those deviations will not result in an increased risk of microbiological hazards, have been approved by the manufacturer receiving the milk, have been approved by the competent authority, and the end product will still meet the microbiological criteria established in accordance with 5.2.3.2.

3.3.4.1 Collection, Transport and Delivery Procedures

Milk to be used for the manufacture of raw milk products shall be collected separately. Mixing, or cross-contamination with milk which does not comply with quality (including microbiological) expected for the processing of raw milk products shall not be allowed.

For example:

- organise collection pick-ups in such a way that milk for the manufacture of raw milk products be collected separately; or
- use milk transport tankers with compartments that will allow the separation of the milk for raw milk products from milk to be heat processed combined with the pick-up of milk for raw-milk products before milk for other products.

3.3.4.3 Transport Time and Temperature

The temperature of the milk to be used for the manufacture of raw-milk products shall not exceed 8°C, unless the milk has been collected within 2 hours after milking.

Deviations from this temperature may be acceptable if these deviations will not result in an increased risk of microbiological hazards, have been approved by the manufacturer receiving the milk, have been approved by the competent authority and the end product will still meet the microbiological criteria established in accordance with 5.2.3.2.

ANNEX II: GUIDELINES FOR THE MANAGEMENT OF CONTROL MEASURES DURING AND AFTER PROCESSING

5.1.3 Establishment of Process criteria

It is critical for a dairy farm, when producing milk intended for the manufacture of raw milk product, to comply with the provisions (including the identified additional provisions) detailed in Annex 1 and in section 5.2.3.1 of this Annex, and these activities should be frequently monitored and evaluated for their effective implementation. This evaluation may lead to the identification of needed improvements at the primary production level (practices, equipment, environment, etc.) or in the classification of dairy farms according to their ability to provide milk for the processing of raw milk products.

Any non-compliance detected either at the farm level or at the milk reception of a manufacturing plant should result in immediate action that may affect the farm, the manufacturing establishment or both. For this reason, there should be clear communication between the manufacturer and the farm and, if necessary, technical assistance should be provided to the primary producer by the manufacturer.
5.2.2 Microbiological and Other Specifications

5.2.2.1 Milk

Depending on the hazard analysis performed by the manufacturer and the combination of microbiological control measures applied during and after processing of milk products, specific microbiological criteria regarding pathogens (for example: *Salmonella* spp., *Listeria monocytogenes*) may need to be established.
Appendix 2

Quarantine Requirements for the Importation of Dairy Products from Approved Countries

1. DAIRY PRODUCTS (OTHER THAN CHEESE AND BUTTER) OF BOVINE ORIGIN FROM APPROVED COUNTRIES

1.1. The milk or the milk from which the dairy product is made must originate from country/zone recognized by the Office International des Epizooties (OIE) as foot and mouth disease-free, with or without vaccination.

1.2. The milk or the milk from which the dairy product is made must originate from a country/zone which meets OIE requirements for freedom from lumpy skin disease, and which is free from buffalo pox.

1.3. The animals must be clinically healthy at the time the milk was obtained.

1.4. The products must be processed in a foot and mouth disease-free country/zone.

1.5. EITHER:

 (a) the milk or the milk from which the dairy product was made must originate from a country/zone which meets OIE requirements for freedom from:
 - rinderpest (Code Article 2.1.4.2); and
 - bovine brucellosis (Code Article 3.2.1.1); and
 - bovine tuberculosis (Code Article 3.2.3.1); and
 - which is free from Jembrana.

 OR

 (b) the milk or the milk from which the dairy product was made must be subjected to one of the following heat treatments:
 - pasteurisation at 72°C for a minimum of 15 seconds or an equivalent treatment, in terms of phosphatase destruction; or
 - pasteurisation at 72°C for a minimum of 15 seconds or an equivalent treatment, in terms of phosphatase destruction; or
 - a UHT treatment of 135°C for minimum of 1 second.

1.6. The packaging or immediate container must be stamped with the date of manufacture of the products.

1.7. Dairy products imported under condition 2.1.5(a) shall not be released from quarantine until the conclusion of a period of 30 days from the date of manufacture.

2. DAIRY PRODUCTS (OTHER THAN CHEESE AND BUTTER) OF OVINE/CAPRINE ORIGIN FROM APPROVED COUNTRIES

2.1 The milk or the milk from which the dairy product is made must originate from a country/zone recognized by the Office International des Epizooties (OIE) as foot and mouth disease-free, with or without vaccination.

2.2 The milk or the milk from which the dairy product is made must originate from a country/zone which meets OIE requirements for freedom from sheep pox and goat pox.

2.3 The animals must be clinically healthy at the time the milk was obtained.

2.4 The products must be processed in a foot and mouth disease-free country/zone.

2.5 EITHER:

(a) the milk or the milk from which the dairy product was made originated in a country/zone which meets OIE requirements for freedom from:
- rinderpest (Code Article 2.1.4.2); and
- peste des petits ruminants (Code Article 2.1.5.2); and
- ovine brucellosis (Brucella melitensis) (Code Article 3.3.2.1); and
- maedi-visna (Code Article 3.3.5.1); and
- contagious agalactia (Code Article 3.3.3.1); and
- contagious caprine pleuropneumonia (Code Article 3.3.6.2) [caprine products only].

OR

(b) The milk or the milk from which the dairy product was made must be subjected to one of the following heat treatments:
- pasteurisation at 72°C for a minimum of 15 seconds or equivalent treatment, in terms of phosphatase destruction; or
- a UHT treatment of 135°C for a minimum of 1 second.

2.6 The packaging or immediate container of products must be stamped with the date of manufacture.

2.7 Dairy products imported under condition 2.2.5(a) will not be released from quarantine until the conclusion of a period of 30 days from the date of manufacture.

3. DAIRY PRODUCTS (OTHER THAN CHEESE AND BUTTER) OF CAMEL ORIGIN FROM APPROVED COUNTRIES

3.1 The milk or the milk from which the dairy product is made must originate from a country/zone recognized by the Office International des Epizooties (OIE) as foot and mouth disease-free, with or without vaccination.

3.2 The milk or the milk from which the dairy product is made must originate from a country/zone which is free from camel pox.

3.3 The animals must be clinically healthy at the time the milk was obtained.

3.4 The products must be processed in a foot and mouth disease-free country/zone.
3.5 EITHER:

(a) the milk or the milk from which the dairy product was made must originate from a country/zone which meets OIE requirements for freedom from:
- rinderpest (Code Article 2.1.4.2) and
- ovine brucellosis (*Brucella melitensis*) (Code Article 3.3.2.1) and
- bovine brucellosis (Code Article 3.2.1.1) and
- bovine tuberculosis (Code Article 3.2.3.1)

OR

(b) The milk or the milk from which the dairy product was made must be subjected to one of the following heat treatments:
- pasteurisation at 72°C for a minimum of 15 seconds or equivalent treatment, in terms of
 - phosphatase destruction or
 - a UHT treatment of 135°C for minimum of 1 second.

3.6 The packaging or immediate container must be stamped with the date of manufacture of the products.

3.7 Dairy products imported under condition 2.3.4(a) will not be released from quarantine until the conclusion of a period of 30 days from the date of manufacture.

4. CHEESE AND BUTTER FROM APPROVED COUNTRIES WHICH ARE FREE OF FOOT AND MOUTH DISEASE

4.1 The milk or the milk from which the cheese or butter is made must originate from a country/zone recognized by the Office International des Epizooties (OIE) as foot and mouth disease-free, with or without vaccination.

4.2 The animals must be clinically healthy at the time the milk was obtained.

4.3 The products must be processed in a foot and mouth disease-free country/zone.

4.4 EITHER:

(a) The milk or the milk from which the cheese or butter was made must be subjected to one of the following heat treatments:
 - pasteurisation at 72°C for a minimum of 15 seconds or equivalent treatment, in terms of phosphatase destruction or
 - a UHT treatment of 135°C for a minimum of 1 second.

OR

(b) The milk from which the cheese or butter was made was not heat treated as above and the milk or milk from which the cheese or butter was made must originate from country/zone which meets the OIE requirements for freedom from rinderpest in accordance with Code Article 2.1.4.2.

4.5 The packaging or immediate container must be stamped with the date of manufacture of the products.

4.6 Cheese or butter not heat treated in accordance with requirement 2.4.4(a) will not be released from quarantine until the conclusion of a period of 30 days from date of manufacture*.

*[Note: For cheese the date of manufacture is the date the curd was set.]
5. CHEESE FROM APPROVED COUNTRIES AFFECTED BY FOOT AND MOUTH DISEASE

5.1 The milk or the milk from which the cheese is made must originate from a country/zone approved by AQIS for the export of dairy products to Australia.

5.2 The animals must be clinically healthy at the time the milk was obtained.

5.3 EITHER:

(a) The milk from which the cheese was made was pasteurised at a minimum of 72°C for 15 seconds or equivalent treatment, in terms of phosphatase destruction and the cheese has attained a pH of less than 6 and the cheese has aged for 30 days or more.

OR

(b) The cheese has attained a pH of less than 6 and has aged for 120 days or more at a temperature not less than 2°C.

5.4 The packaging or immediate container must be stamped with the date of manufacture of the products.

5.5 Cheese made according to requirement 2.5.3(a) above will not be released from quarantine until a minimum of 30 days after the date of manufacture. Sampling of cheeses prior to release from quarantine to ensure the pH is not above 6 may be required by the Director of Quarantine.

5.6 Cheese made according to requirement 2.5.3(b) above shall not be released from quarantine until a minimum period of 120 days storage at a temperature not less than 2°C after the date of manufacture. Sampling of cheeses prior to release from quarantine to ensure the pH is not above 6 may be required by the Director of Quarantine.

*[Note: For cheese the date of manufacture is the date the curd was set.]
Appendix 3

Raw milk product consumption behaviour, knowledge & motivations

1. Introduction

Evidence about consumer's knowledge, motivations and behaviours plays a fundamental role in the risk analysis process used to develop primary production and processing standards. In the case of the Raw Milk Products Primary Production and Processing Standard an enhanced understanding of: (i) who consumes raw milk products; (ii) why they are consumed; and (iii) consumer's knowledge of raw milk products; can inform approaches to assess and manage the health and safety risks posed by the consumption of raw milk products.

Unfortunately there is a poor research base on Australian consumers' knowledge, motivations and behaviours with respect to raw milk products from which to draw conclusions. Accordingly FSANZ commissioned a qualitative consumer study on raw milk behaviour and attitudes to secure some Australian data. The FSANZ consumer study used qualitative methods to develop an in-depth understanding of consumer’s attitudes, understanding and consumption behaviours (Colmar Brunton, 2009). The study provided data that enables an informed understanding of the drivers of consumption and the breadth of consumer's motivations. However the study was not designed to provide robust estimates of quantitative consumption behaviour.

In contrast to the FSANZ consumer study a number of international studies have been undertaken that do permit population estimates of consumption behaviour to be determined. A number of food safety behaviour surveys collect data on various behaviours including the consumption of raw milk and milk products (e.g. Headrick et al 1997; Altekruse et al 1999; Zhang & Penner 1999). These can provide data on the prevalence of unpasteurised milk and milk product consumption, and typically permit a socio-demographic profile to be developed of those who consume unpasteurised milk products. However as their focus is food safety in general more detailed information on consumption behaviour (e.g. quantity, frequency), motivations and understanding of risks is generally limited. Furthermore these studies have tended to focus on unpasteurised milk consumption rather than other products prepared from unpasteurised milk.

Another group of studies have specifically focussed on dairy farm workers and owners (e.g. Jayarao et al 2006; Kaylegian et al 2008). These may use representative samples or opportunistic samples of dairy farm workers and their families and typically collect data on consumption behaviour, motivations and understanding. Some studies also collect samples of bulk milk and relate microbiological analyses to demographic and cognitive aspects (e.g. Jayarao et al 2006).

The New Zealand Food Safety Authority (NZFSA) commissioned a study on understanding and awareness of raw milk and raw milk products in 2008. The study targeted 4 distinct groups covering the general public, consumers of raw milk products, trade and health professionals and vulnerable groups. A particular focus of NZFSA study was to gather data on the effectiveness of NZFSA food safety initiatives on raw milk and raw milk products. The study also collected data on understanding of risks and terminology used on product packaging and in food safety educational materials.

This attachment briefly summarises the key findings from the literature with respect to the three key areas:
• who consumes raw milk products
• why they are consumed
• consumers’ knowledge of raw milk products.

2. Who consumes raw milk and raw milk products?

There is limited reliable data on the prevalence of unpasteurised milk and milk product consumption. Available data is focussed on the level of unpasteurised (drinking) milk consumption, rather than other products such as raw milks cheeses and yoghurts.

As part of the FSANZ commissioned consumer research an online poll was carried out to gauge the prevalence of consumption of unpasteurised milk. The poll suggested that the prevalence of consumption was 0.7%, while this can only be considered indicative it is consistent with other international studies (Colmar Brunton 2009). For example the prevalence of consumption estimated from food safety surveys in the United States suggests between 1-3% of the population may consume unpasteurised milk (Headrick et al 1997; Altekruse 1999; Zhang & Penner 1999).

Importantly, consumption of unpasteurised drinking milk is not evenly distributed throughout the population but rather particular identifiable groupings tend to be associated with raw milk consumption. For example among dairy farm workers and their families consumption of unpasteurised milk may be as high as 45% (Kaylegian et al 2008; Jayarao 2006), similarly some ethnic cultures also have also demonstrated a higher likelihood of consuming raw milk (Altekruse 1999; Bell 1999).

Analysis of 1995/96 data from a survey carried out in 8 US states suggests that raw milk consumers were more likely to be male, younger, have lower levels of formal education, lower income levels and more likely to be Asian, Pacific Islander or Hispanic than those who did not consume unpasteurised milk (Altekruse 1999). This analysis also found that those who reside in suburban or small town locations were more likely to consume unpasteurised milk than those in rural locations, who in turn were more likely to consume unpasteurised milk than those in urban locations.

No Australian population based surveys of unpasteurised milk or milk product consumption has been located. While no reliable socio-demographic estimates on Australia consumers of raw milk are available the FSANZ study provided evidence that in some cases raw milk is consumed by those with higher vulnerability to food-borne illnesses for example children and including children under the age of 4. The FSANZ study found that some parents do feed unpasteurised milk to infants and children perceiving benefits related to allergies or lactose/digestive issues. The study suggested that goat milk was more likely to be fed to infants and children though some parents also fed their children raw cow milk.

3. Why are raw milk and raw milk products consumed?

The FSANZ consumer study identified four raw milk consumer 'segments' based on variations in their motivations for consumption and triggers leading to that consumption. They were:

• **Opportunists**: typically people who live and/or work in rural areas, especially the dairying community, and for whom the primary motivation is convenience, low cost and easy availability.
• **Lifestylers**: the most emotionally committed segment with individuals who choose to consume organic and natural products (and often other compatible lifestyle choices). Consumption is part of a wider belief system and is not done in isolation.

• **Nutrition seekers**: like the lifestyler segment, the nutrition seeker makes a conscious choice to consume raw milk. The choice is based on an acceptance of the perceived or promoted nutritional benefits of raw milk, often with reference to technical or scientific considerations.

• **Health concerned**: this segment makes a deliberate choice to consume raw milk in actively responding to a health consideration. This segment has much in common with the previous two, though while the previous two are pro-active choices made by individuals, the health concerned segment is more reactive to a specific health concern.

The segments identified are neither definitive nor mutually exclusive. In particular there was considerable overlap with individuals expressing motivations from a number of segments, however for most individuals a dominant segment was observed or could be inferred. The limitations of the study did not permit the relative sizes of the segments to be determined nor to exclude the possibility of other segments not included here.

There are no quantitative Australia data on motivations for consuming unpasteurised milk, however California data from 1994 data indicate that taste (38% of consumers indicated this), health (17%), nutrition (10%) and as it was the only source of milk (10%) (Headrick et al 1997) were the key reported reasons for consuming raw milk. Surveys of dairy farming families indicated that taste and convenience, followed by cost and then nutrition and health aspects motivated their consumption of unpasteurised milk (Kaylegian et al. 2008). Jayarao et al (2006) also found taste and convenience were key motivators in their study of Pennsylvanian farming families.

4. **Consumer’s knowledge and understanding of health risks/benefits**

The FSANZ consumer study sought to better understand consumer’s knowledge and understanding of the health risks and benefits of raw milk. It was apparent that many participants held detailed and nuanced knowledge and beliefs about raw milk. In many cases these knowledge and beliefs, particularly related to health and nutrition, was in contradiction to generally accepted scientific understandings.

Participants in the research perceived several benefits of raw milk over pasteurised milk. These included cost and availability (for the opportunist segment) and that pasteurisation was detrimental to the nutritional value of the milk. The main benefits participants reported of raw milk were: nutritional content, health, taste and cost. A major benefit was knowing the source of the milk, and this was also an essential pre-requisite to consuming raw milk for many participants. They felt closer to the producer of the milk, reporting that they knew what the animals were fed, how they were looked after and other factors that were of interest and relevance to them.

For consumers of raw cow milk, the benefits were vested very much in the unpasteurised nature of the milk. For consumers of raw goat milk the source of the benefits was less definitive – in particular some of the health benefits sought would be obtained from the consumption of any goat milk, and the choice of raw goat milk was more opportunistic.

Many participants in the FSANZ consumer study were aware of information promoting the dangers of raw milk.
They largely considered this ill-informed at best, and malicious scare-mongering at worst. Consumers considered that the warning labels on ‘pet milk’ and ‘bath milk’ indicating that it was not suitable for human consumption were a legal requirement – rather than a legitimate warning.

The main sources of information about raw milk are word of mouth and personal experience and observation. A range of books and websites was referred to – the single information source most specifically referenced was the Weston A. Price Foundation, though this may reflect the origin of the sample used for the study as much as the breadth of information in the community.
Appendix 4

Hazard table for the production and transport of raw milk intended to be used for Category 2 products

<table>
<thead>
<tr>
<th>Primary Production Factor</th>
<th>Hazard/Risk Area</th>
<th>Baseline Control Measures currently applied</th>
<th>Recommended Additional Measures for the harvesting and transport of raw milk intended for Category 2 Products</th>
</tr>
</thead>
</table>
| Animal Health | Animals infected with zoonotic pathogens of human health impact | Exclusion of diseased animals (General requirement under Standard 4.2.4 that a dairy primary production business must include control measures in its food safety program that manage hazards in relation to animal health.) | • In the case of clinical disease, appropriate veterinary intervention is required.
• The milking herd is to be subject to veterinary inspection at an increased frequency.
• A suitable identification system to be in place to ensure each individual animal is uniquely identifiable.
• Mandatory vaccination programmes may be considered and included as a requirement if deemed appropriate. |
| Mastitis management | (not a specific requirement under Standard 4.2.4 but should be practiced as part of managing hazards in relation to animal health) | • Operator required to have in place, and adhere to, a programme or procedures for the management of mastitis (for example Countdown Downunder) in conjunction with veterinary advice.
• Mandatory annual milking machine testing by a suitably competent person. |
| ‘Skills and knowledge’ | | • Dairy primary production business must be familiar with, and understand, relevant requirements specific to animal husbandry, feeding and harvesting when supplying milk intended for raw milk products. |
| Inputs | Inputs contaminated with pathogens of human health impact | Animal feed and water should be safe and suitable (General requirement under Standard 4.2.4 that a dairy primary production business must include control measures in its food safety program that manage hazards arising from inputs.) | • Advisory information to be provided that milking animals should be supplied with drinking water of a suitable quality to minimise water borne disease transmission. This will include limiting access of animals to unsuitable water.
• All feed (including feed additives and supplements) must be of known origin, be traceable back to the source of the feed and be suitable for the milking animals.
• No feed waste, poor quality silage, sludge or mouldy feed to be offered. |

47 The clinical and/or pathological manifestation of infection (2007 OIE – Terrestrial Animal Health Code)
<table>
<thead>
<tr>
<th>Primary Production Factor</th>
<th>Hazard/Risk Area</th>
<th>Baseline Control Measures currently applied</th>
<th>Recommended Additional Measures for the harvesting and transport of raw milk intended for Category 2 Products</th>
</tr>
</thead>
</table>
| Farm dairy | Contamination of milking plant with either pathogens of human health impact or material which supports the survival/growth of such pathogens | (General requirement - food safety program must include control measures that manage hazards arising from the design, construction, maintenance and operation of premises and equipment.) | • Feed storage facilities must be appropriate for the feed. Advisory information to be provided.
• Particular care must be taken with the production or purchase of fermented feeds. Any fermented feed is to be prepared, stored and used in a manner that minimises microbial contamination. Special consideration to be given to design of silo’s or bunkers, production practices for silage, and controlling the quality of the fermented feed including pH or sensory assessment.
• Farm Dairy assessments/audits to be carried out more frequently (6 monthly?)
• Assessment criteria and checklist to be reviewed once final criteria are agreed |
| Environment (Housing and races) | Contamination of exterior of udder or teat with pathogens of human health impact | (General requirement - food safety program must include control measures that manage hazards arising from the design, construction, maintenance and operation of premises. Premises include animal holding areas adjacent to milking sheds.) | • Housing, pens and bedding must be designed, maintained and operated in an appropriate manner to minimise pests, contamination of feed and soiling of the udders and teats.
• Holding, feeding, loafing and wintering yards or pads must be operated in a manner that minimises soiling of the udder and teats as well as negative impacts on animal health
• Races (stock tracks) must be maintained to minimise soiling of the udder and teats
• Effluent must be managed to ensure appropriate disposal and minimise exposure to milking animals. Spray irrigation must be under a suitable plan.
• Milk to be withheld from animals exposed to areas affected by flooding |
<table>
<thead>
<tr>
<th>Primary Production Factor</th>
<th>Hazard/Risk Area</th>
<th>Baseline Control Measures currently applied</th>
<th>Recommended Additional Measures for the harvesting and transport of raw milk intended for Category 2 Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking Plant</td>
<td>Animal to animal transmission of pathogens of human health impact</td>
<td>• Operator to ensure any housing is operated in a manner that does not pose an increased risk to animal health, that is cleaned as appropriate, has airflow; immediate removal on identification of diseased animals with re-entry only once the condition has been resolved or, in the case of infected(^{48}) animals, when instructed to do so by a Vet or authorised person, for the period instructed.</td>
<td></td>
</tr>
<tr>
<td>Milking Plant</td>
<td>Contamination of farm plant and equipment with pathogens of human health impact or material which supports the survival/growth of such pathogens</td>
<td>Cleaning, sanitising and maintenance of premises and equipment</td>
<td>• Pre-milking rinse or sanitising rinse must be undertaken as appropriate for the purpose of the milk (i.e. same as for manufacturing equipment contact surfaces). Drain if necessary following rinse.</td>
</tr>
<tr>
<td>Milking Animal</td>
<td>Contamination of udder or teats with pathogens of human health impact or material which supports the survival/growth of such pathogens</td>
<td>Udder and teats should be clean Withholding of milk observed to be abnormal. Milk must be withheld from diseased animals and animals isolated on veterinary instruction</td>
<td>• Teats must be clean and dry: - for bovine wash and dry with single service towel - for goats wipe - for other species clean in the most appropriate manner.
 • Advisory information on pre-milking teat disinfection to be provided – pending further information.
 • Mandatory stripping of foremilk(^{49}), observation for abnormalities and withholding of milk from supply.
 • Animals with milk to be withheld from diseased animals or animals withheld on veterinary inspection are to be segregated in such a way that their milk cannot contaminate the bulk milk.</td>
</tr>
<tr>
<td>Post milking teat canal infection with pathogens of human health impact</td>
<td>Water Quality Requirement (requirement for control measures to manage hazards arising from inputs)</td>
<td>• Mandatory protection of teat canal from infection immediately post milking (e.g. teat disinfection)</td>
<td></td>
</tr>
<tr>
<td>Contamination of water with pathogens of human health impact</td>
<td>Water Quality Requirement (requirement for control measures to manage hazards arising from inputs)</td>
<td>• Water to be free of pathogens, i.e. must meet the microbiological standard applicable to potable water or an acceptable alternative</td>
<td></td>
</tr>
</tbody>
</table>

\(^{48}\) Presence of a pathogenic agent in the host

\(^{49}\) Drawing foremilk ejects microorganisms which may have entered the teat canal.
<table>
<thead>
<tr>
<th>Primary Production Factor</th>
<th>Hazard/Risk Area</th>
<th>Baseline Control Measures currently applied</th>
<th>Recommended Additional Measures for the harvesting and transport of raw milk intended for Category 2 Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase in numbers of microorganisms of concern</td>
<td>Cooling time / temp</td>
<td>• Refer to post harvest below, no additional measures required during milk harvesting</td>
</tr>
</tbody>
</table>
| | Transfer of pathogens of human health impact by milk harvesters | Health and hygiene requirements | • Hands and forearms to be kept clean during milking and appropriate hand washing facilities must be available.
• Hands must be washed between animals when milking by hand.
• Wearing new, clean, latex-type gloves by milking personnel during milking recommended. |
| Milking Plant | Contamination of milking plant or storage equipment with pathogens of human health impact | Cleaning / sanitizing
Current water quality requirements
Use of storage equipment | • No additional measure
• Water must meet the requirements for use in manufacturing premises i.e. potable water or acceptable alternative
• Equipment for storage of raw milk must not be used for any other purpose (e.g. not for storage of calf milk.) When not in use the equipment must be protected from soiling or other contamination. |
| Storage | Increase in numbers of microorganisms of concern | On farm milk cooling (milk must be cooled and stored at a temperature that prevents or reduces the growth of microbiological hazards).
Current industry practice is for milk to be cooled to 5°C or less within 3.5 hours from the start of milking.
Provisions for withholding unsuitable milk | • On farm milk cooling to 6°C or below within 2 hrs from the completion of milking (from Codex)
• Further cooling to 5°C or less within 3.5 hours from the commencement of milking
• Raw milk stored on-farm must be held at or below the nominated temperature limits until removal from the farm silo or until the next milking.
• All reasonable steps taken to avoid raw milk not suitable for category two dairy products being collected or used unintentionally for their production. Steps include clearly labelling the bulk milk tank and not storing any material other than category two milk in a bulk milk tank intended for category two raw milk. |

50 Note that the maximum length of time milk can be stored on farm will be determined through compliance with the recommended additional measures at the ‘Transfer to Processing Premises’ step which states that processing is to commence within 48 hours of the first milking.

78
<table>
<thead>
<tr>
<th>Primary Production Factor</th>
<th>Hazard/Risk Area</th>
<th>Baseline Control Measures currently applied</th>
<th>Recommended Additional Measures for the harvesting and transport of raw milk intended for Category 2 Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal of non conforming raw milk</td>
<td>Use of milk that is not fit for purpose</td>
<td>Procedures to appropriately dispose of non conforming milk</td>
<td>• Where non conforming milk (for Category Two purposes) is shown to conform with general requirements this milk can be diverted to processing</td>
</tr>
</tbody>
</table>
| Transfer to Processing Premises | Environmental contamination | Sanitary condition of milk collection vehicles | • As for transport of pasteurised milk
• Prevention of contamination with category one milk |
| Increase in numbers of microorganisms of concern | | | • Milk temperature not to exceed 8°C at any point from collection at the farm through to commencement of the manufacturing process (Codex)
• Processing to commence within 48 hours of the first milking (Codex) |
| Non category two milk which may be contaminated with pathogens of human health impact | | | • Requirement that milk intended for category two processing must be segregated from milk intended for category one processing.
• Milk must only be sourced from a farm dairy registered/licensed to supply raw milk for the manufacture of category two dairy products. |
Appendix 5

Hazard table for the production raw milk cheese at key steps in production

<table>
<thead>
<tr>
<th>Step</th>
<th>Hazard/risks</th>
<th>Baseline Control Measures<sup>51</sup> (applicable generally to cheese production)</th>
<th>Recommended additional measures for raw milk products</th>
</tr>
</thead>
</table>
| | | General cross-contamination预防cross-contamination from environment, premises, equipment, ingredients and people through:
• Cleaning and sanitising program
• Maintenance program
• Health and hygiene requirements | Category 1 Products
(System for) Segregation of milk and dairy materials intended for the manufacture of Category 2 products from Category 1 products.
• Prior to processing
• During processing
Category 2 Products
1. Only milk that has been produced in accordance with requirements for raw milk production for Category 2 products can be used
2. Raw milk specifications could include criteria for specific pathogens and/or indicators |
| General requirements applicable at all stages of raw milk cheese processing
Cross-contamination of milk or products from higher risk milk (co-mingling) | | |
| Milk receipt and storage
Presence of pathogenic microorganisms in the raw milk | No measures currently specified – there are industry incoming material requirements such as somatic cell count/total plate count (generally for quality reasons as pasteurisation will eliminate pathogens present) | (No additional measures are currently applied to milk used, as by definition pathogens are eliminated through processing techniques and/or the intrinsic characteristics of the product) |
| Milk standardisation (if required)
Growth of any pathogenic microorganisms present | Time/temperature controls (storage at 5°C or below) | Processing to commence within 48 hours of milk harvesting.
Milk stored at 5°C or below – temperature not to exceed 8°C prior to manufacture |
| Milk standardisation (if required)
Growth of any pathogenic microorganisms
Time/temperature controls | Specific time/temperature measures may need to be documented, implemented, recorded and verified. | |

⁵¹ Baseline Control measures must be: Documented, including non-conformances; implemented; recorded; and verified
<table>
<thead>
<tr>
<th>Step</th>
<th>Hazard/risks</th>
<th>Baseline Control Measures(^*)</th>
<th>Recommended additional measures for raw milk products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(applicable generally to cheese production)</td>
<td>Category 1 Products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Category 2 Products</td>
</tr>
<tr>
<td>Milk pre-heating/warming</td>
<td>Growth of any pathogenic microorganisms present</td>
<td>Minimise time (generally quality rather than safety)</td>
<td>Minimise time for safety purposes- measures may need to be documented, implemented, recorded and verified.</td>
</tr>
<tr>
<td>Addition of starter culture/acidification process</td>
<td>Slow or incomplete growth of starter culture could allow for pathogen survival/grow during acidification.</td>
<td>Use of viable, active starter culture (monitored though checking pH drop over time)</td>
<td>1. Commercially sourced starter cultures are preferred but regardless of source they must be pathogen free, and capable of achieving required pH drop in required time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. pH drop in specified time (if integral to safety)- specific measures may need to be documented, implemented, recorded and verified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Whey or material derived from previous cheesemaking permitted.</td>
</tr>
<tr>
<td>Coagulation e.g. addition of rennet</td>
<td>Contamination from starter culture</td>
<td>‘approved supplier’ or other assurance/testing program</td>
<td>No additional measures</td>
</tr>
<tr>
<td>Curd production e.g. cutting, cheddaring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curd processing e.g. heating/cooking, stretching, washing</td>
<td>Processing • does not achieve the required level of pathogen reduction • allows pathogen increases beyond the level that subsequent processing steps can eliminate</td>
<td>Specified curd processing steps</td>
<td>Curd processing parameters specified if integral to safety or categorisation of the product: e.g. specified minimum curd cooking temperature.</td>
</tr>
<tr>
<td>Moulding/pressing</td>
<td></td>
<td></td>
<td>Curd processing parameters specified if integral to safety - measures may need to be documented, implemented, recorded and verified.</td>
</tr>
</tbody>
</table>

\(^*\) Controls around assuring the safety of starter cultures to be investigated
<table>
<thead>
<tr>
<th>Step</th>
<th>Hazard/risks</th>
<th>Baseline Control Measures 3<sup>a</sup> (applicable generally to cheese production)</th>
<th>Recommended additional measures for raw milk products</th>
</tr>
</thead>
</table>
| Salting e.g. dry salting/brine immersion.
Note that salting may occur before or after moulding | Insufficient salt content/distribution achieved allowing for microbial growth during maturation or not providing the necessary pathogen reduction. | Specified salt concentration/contact time | Parameters specified if integral to safety or categorisation of the product (possibly in terms of water activity or minimum salt concentration) - measures may need to be documented, implemented, recorded and verified. |
| Maturation/ripening | Growth of pathogenic microorganisms present depending on pH, water activity, presence of inhibitory substances in the cheese, time and temperature of storage etc.
Change in surface conditions during storage (e.g. pH) could promote growth of some pathogens present | Storage time/temperature controls
Water activity and pH of product
Use of specific treatments must not adversely affect the safety of the product | Parameters specified if integral to safety or categorisation of the product. These could include:
- Minimum storage time and temperature
- Specified moisture content (e.g. <39%) | Parameters specified if integral to safety or categorisation of the product. These could include:
- Minimum storage time
- pH/salt in moisture
Measures may need to be documented, implemented, recorded and verified. |
| Packaging | General cross-contamination | Approved supplier of packaging materials | No additional measures | No additional measures |
| Product storage, distribution and retail | Growth of microorganisms | Time/temperature controls | No additional measures | No additional measures |
| Final product verification | Process failure not identified | Must comply with Standard 1.6.1 – Microbiological Limits for Foods
Testing for specific parameters e.g. pH, water activity, salt content | No additional measures | Testing to verify process required on every batch. |
References:

Overview of submissions received on Discussion Paper for Proposal P1007

This is a broad overview of the types of comments made in submissions to the Discussion Paper and have been grouped deliberately for the purpose of this overview. It does not cover specific details of individual submissions. A large number of submissions were received in response to this paper and have been taken into account in the assessment of the Proposal.

The Discussion Paper was open for public consultation for seven weeks including a one-week extension. There were officially 903 submissions received at the end of the seven weeks. This number does not include comments received after the closing date (81 at (September 2009) or campaign letters where the signatures and contact details were unreadable (41 submissions). A petition submitted with over 330 signatures has been counted as one submission, however, the message in the petition has been taken into account in the analysis of the submissions.

1. General comments in support of the Proposal

The majority of submissions supported the Proposal for one or more of the following reasons:

- access to raw drinking milk for health and nutritional benefits
- availability of a greater range of raw milk cheeses
- freedom to choose these products.

Of those that made comment on aspects of the Proposal itself, the majority were supportive of FSANZ undertaking the assessment using the Category Framework approach.

2. General comments against the Proposal

Submitters that did not support FSANZ continuing with the assessment of raw milk products presented arguments including:

- the current permissions in the Code are sufficient and flexible enough that they allow for cheeses where the milk is not heated as high as pasteurisation temperatures
- the positive economic contribution and the reputation of the current Australian specialty cheese industry will be threatened by the risks posed by introducing permissions for raw milk cheeses
- the argument that cheeses need to have raw milk usage to develop better flavour is fallacious and many Australian pasteurised cheeses continue to win overseas awards against overseas cheeses
- the risk of long term illness and ailments as a result of consuming unpasteurised products far outweighs any benefits
- producers of traditional raw milk products overseas, particularly in Europe and the United Kingdom, are increasingly using heat-treated milk to maintain consistency of product and prevent pathogen problems
the possibility of increased regulatory burden on existing cheese producers if raw milk products are allowed

bacterial problems can occur from time to time in major dairy processors even with the best food safety systems in place and under current pasteurisation standards

because Europeans ‘do things differently’ is not a valid reason to compromise Australia’s safety.

3. Other comments raised in submissions

3.1 Comments on the objectives of the Proposal

Submitters that supported the objectives of the Proposal believed the assessment would:

• achieve consistency in approach to the regulation of raw milk products across all States and Territories and thereby address current inconsistencies in requirements for the sale of goat milk

• provide a level playing field for domestic and overseas manufacturers of raw milk products

• reduce the need for case-by-case assessment of individual raw milk products

• provide an acceptable level of consumer protection.

There was also support expressed for outcomes-based Standards but it was suggested that greater prescription may be needed to effectively manage additional risks posed by raw milk products and ensure the protection of public health and safety. For example, it is anticipated that those wishing to make raw milk products will be smaller dairy manufacturers and they will benefit from specific guidance.

3.2 Comments on the ‘Category Framework’ approach

Comments were received that the initiative is a sound approach to assessing raw milk products. However, submitters, particularly enforcement agencies and the dairy industry, are keen to see more details of the categories, including the outcomes of the scientific assessment and proposed risk management options under the framework. The enforcement agencies are particularly interested in considering how they would implement and enforce permissions for raw milk products under the Category Framework. It was highlighted in several comments that Standards need to be scientifically-based and not based on consumer beliefs. Submitters stated that the Category Framework provides a good mechanism for ensuring this happens.

3.3 Support for access to raw milk products

The majority of submissions were from consumers who believed there should be increased permissions for raw milk products as they want the option or freedom to choose to purchase them over conventional pasteurised milk products.

Submitters made statements such as:

• Australian consumers have been denied a choice of raw milk products
people have the right to make their own choice as to what they consume, how they want their nourishment

I strongly support consumer choice

I would like to be given a choice about the type of product I buy…

I consider it my right to consume…

make the products available but leave it to the consumer to make their decision

Further details on the reasons people give for wanting access to raw milk cheeses and raw drinking milk are summarised below:

3.3.1 Support for the sale of raw milk cheeses

Many submissions commented that they support access to raw milk cheese in Australia. The main reason expressed by submitters is that they consider such cheeses to be gourmet products that are superior in their flavour, texture and taste profile compared with their pasteurised equivalents.

A number of the submitters commented that increasing permissions for the production of raw milk cheeses in Australia will provide:

- greater consumer choice
- increased local consumption
- reduced dependency on imported products
- opportunities for local producers to enter this growing niche market.

Approximately half of all submissions received in support of increased permissions for raw milk cheeses used a ‘form letter’. The letter made several points to support the view that amendments should be made to the Code to allow the production and sale of raw milk cheese in Australia. Comments included that the current dairy Standard (Standard 4.2.4):

- is highly discriminatory as it provides permissions for international cheeses but does not allow Australian cheese makers the choice of making similar cheese from raw milk
- is anti-competitive and trade restrictive as it does not encourage world best practice in cheese/milk production and allows the use of milk of poor microbiological quality for cheese making
- is a breach of Australia’s commitment to WTO Policy as it cannot be justified on scientific grounds for food safety
- is overly prescriptive. It does not meet Government guidelines on Primary Production and Processing Standards\(^{52}\) that stipulate minimal effective regulation.

A small number of cheese makers and retailers expressed their desire to be able to produce and sell a greater range of raw milk cheeses as they are experiencing increased demand for such products and see a good opportunity for Australian producers to benefit from competing in this premium market. Additionally a small number of submitters requested increased permissions for imported raw milk cheeses.

\(^{52}\) http://www.foodstandards.gov.au/_srcfiles/Primary_Production%20_Processing_Std_2006.pdf
3.3.2 Support for the sale of raw drinking milk

Approximately one third of submitters advocated access to raw drinking milk arguing the nutritional and health benefits. Of these, approximately two thirds considered raw milk has health-promoting properties and superior nutritional content compared with pasteurised milk.

The majority of these submitters presented their comments as their own understandings or views and some submissions included references to websites, books and journal articles to support their views.

Just under one third of these submitters described their own experiences (or that of someone they know) in health improvements they believe to be from consuming raw milk.

3.4 Raw milk products can be produced safely

Submitters made comments that there is a low likelihood that raw milk and raw milk products would be contaminated with pathogens, providing the correct production requirements are followed and therefore these products would not pose a risk to public health and safety.

The comments are summarised under three headings below:

3.3.3 Production requirements to ensure safety of raw milk

Submitters suggested control measures for primary producers of raw milk in order to ensure product safety. The requirements suggested are based on husbandry methods in dairy farming such as:

- cattle must be farmed in open pastures which are certified organic
- cattle are fed grass and hay exclusively
- cattle are allowed to access pasture at least 150 days per year
- there must be a clean place for cattle to lie down and rest. All bedding areas are made of something that the cow would find in a natural environment such as pasture
- no use of antibiotics, growth or milk stimulating hormones and no pesticides on cattle or the environment.

Much of the information provided in these submissions appears to be based on the ‘raw milk certification requirements’ described by raw milk advocate groups such as the Weston A Price Foundation in the USA and Nourished Magazine in Australia.

3.3.4 Production requirements to ensure safety of raw milk cheese

Information was provided on critical controls in the production of cheeses to ensure safety of the final product. Suggestions varied but some examples include:

- the single critical control point that guarantees safety for all cheese varieties is starter culture activity that creates a hostile environment to pathogens in the cheese

• control the chemistry, both physical and biochemical, of the product so that pathogens cannot survive or grow e.g. pH, moisture content (water activity), anti-microbial compounds

• manufacturers of raw milk cheese need to use a HACCP-based food safety program that includes all relevant critical control points (CCPs)

• it will be necessary to set limits and monitor (by testing) the presence of specific pathogens in the incoming raw milk and the final cheese product.

3.3.5 Properties of raw milk that make it safer than pasteurised milk

Many submissions suggested that raw milk has its own built-in safety net of anti-microbial components. Such components quoted include lactoperoxidase, lactoferrin, short chain fatty acids and beneficial bacteria, all of which are claimed to be destroyed by the pasteurisation process.

3.5 Black market sales of raw drinking milk

Some individual submitters indicated that they were accessing illegal or ‘black-market’ raw cow drinking milk. Others stated they were buying ‘cosmetic’ or ‘pet food’ raw milk that is labelled as ‘not for human consumption’ because it was not possible to obtain supplies legally.

Some enforcement agencies also made mention of their difficulties enforcing the current restrictions on cow milk sales and policing black-market sales.

3.6 Consumption by persons vulnerable to food-borne illness

A small number of nutritionists and other health practitioners stated they prescribed raw milk to patients such as the elderly, young children and those suffering ailments or diseases.

Individual consumers also commented that they:

• feed raw milk to their young children including infants, children under 5 years old and use raw milk as a supplement for breast milk
• use raw milk to relieve/cure chronic illness
• consume raw milk while pregnant.

3.7 Labelling of raw milk products

Submitters presented a mixed view on whether raw milk products need to be labelled and what labels should say.

For example, many submitters supporting access to raw milk products indicated they would be happy if such products were labelled with information as to the nature of the product and/or any risks so consumers can make an informed choice. Others stated that there is no reason to label raw milk products with any sort of warning.

However, other submitters raised concerns that using labelling as a risk management measure would not be adequate. That is, if a product is considered to present a risk to public health and safety then it should not be permitted. Simply requiring information on a label is not a sufficient way of managing that risk.
3.8 Alternative technologies

There were suggestions that the assessment should consider the use of a range of technologies (i.e. alternatives to pasteurisation) that may also provide greater health protection.

3.9 Microbiological limits

Comments were made regarding the existing microbiological limits for raw milk and raw milk cheese in Standard 1.6.1. Some submitters suggested that these limits, particularly those for *E. coli* and *L. monocytogenes*, need to be reviewed as they are not consistent with international standards and queried whether this will occur as part of this Proposal.

3.10 Membership of the Standard Development Committee and Dairy Scientific Advisory Panel

The expertise and affiliations of the members of the SDC and Dairy Scientific Advisory Panel for the Proposal were queried and it was suggested that they do not adequately represent raw milk products industry and artisan cheese making.

3.11 Environmental impact

Several submissions, in supporting organic, localised, cottage industries for raw milk, also make claims about the environmental impact of the current dairy industry.
Membership of the Dairy (Raw Milk Products) SDC

<table>
<thead>
<tr>
<th>Name</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOVERNMENT</td>
<td></td>
</tr>
<tr>
<td>Dr Anne Astin</td>
<td>Dairy Food Safety, Victoria</td>
</tr>
<tr>
<td>Mr Bill Calder</td>
<td>WA Health</td>
</tr>
<tr>
<td>Dr Scott Crerar</td>
<td>New Zealand Food Safety Authority</td>
</tr>
<tr>
<td>Mr Doug Eddy</td>
<td>Dairy Food Safety Victoria</td>
</tr>
<tr>
<td>Ms Narelle Marro</td>
<td>Department of Agriculture, Fisheries & Forestry</td>
</tr>
<tr>
<td>Mr Phil Pond</td>
<td>Safe Food Production Queensland</td>
</tr>
<tr>
<td>Ms Jane Raupach</td>
<td>Department of Health & Ageing and SA OzFoodNet (SA Dept. Of Health)</td>
</tr>
<tr>
<td>Mr Steve Rice</td>
<td>Dairy Authority of South Australia</td>
</tr>
<tr>
<td>Dr Steven Roberts</td>
<td>Australian Quarantine & Inspection Service</td>
</tr>
<tr>
<td>Mr Peter Sutherland</td>
<td>New South Wales Food Authority</td>
</tr>
<tr>
<td>Ms Slava Zeman</td>
<td>Australian Quarantine & Inspection Service</td>
</tr>
<tr>
<td>INDUSTRY</td>
<td></td>
</tr>
<tr>
<td>Ms Karen Armitage</td>
<td>Dairy Australia</td>
</tr>
<tr>
<td>Ms Carol Bate</td>
<td>Fonterra</td>
</tr>
<tr>
<td>Mr Tony Beaver</td>
<td>Food and Beverage Importers Association</td>
</tr>
<tr>
<td>Ms Helen Dornom</td>
<td>Dairy Australia</td>
</tr>
<tr>
<td>Mr Ross Greenaway</td>
<td>Murray Goulburn Co-Op Ltd</td>
</tr>
<tr>
<td>Mr Wes Judd</td>
<td>Australian Dairy farmers</td>
</tr>
<tr>
<td>Dr Roger MacBean</td>
<td>Parmalat Australia Limited</td>
</tr>
<tr>
<td>Mr John O'Regan</td>
<td>Murray Goulburn Co-Op Ltd</td>
</tr>
<tr>
<td>Mrs Denise Riches</td>
<td>Goat Industry Council of Australia</td>
</tr>
<tr>
<td>Dr Jenny Robertson</td>
<td>Jenny Robertson Consulting Services</td>
</tr>
<tr>
<td>Mr Neil Willman</td>
<td>Cheese Expertise (Private company)</td>
</tr>
<tr>
<td>CONSUMER</td>
<td></td>
</tr>
<tr>
<td>Ms Heather Wieland</td>
<td>Country Women’s Association of Australia</td>
</tr>
</tbody>
</table>
Membership of the Dairy Scientific Advisory Panel

<table>
<thead>
<tr>
<th>Name</th>
<th>Employer/Affiliation</th>
<th>Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Robin Condron</td>
<td>Dairy Australia</td>
<td>Veterinary microbiology and research management</td>
</tr>
<tr>
<td>Dr Patricia Desmarchelier</td>
<td>Private consultant</td>
<td>Risk assessment and microbiological expertise</td>
</tr>
<tr>
<td>Dr Rod Dyson</td>
<td>Veterinarian/Dairy farmer</td>
<td>Animal health, on-farm knowledge and practices</td>
</tr>
<tr>
<td>Mr Doug Eddy</td>
<td>Dairy Food Safety Victoria</td>
<td>On-farm dairy industry knowledge</td>
</tr>
<tr>
<td>Mr Les Hammond</td>
<td>Consultant</td>
<td>Cheese making</td>
</tr>
<tr>
<td>Mr Martyn Kirk</td>
<td>Department of Health & Ageing - OzFoodNet</td>
<td>Public health epidemiological expertise</td>
</tr>
<tr>
<td>Dr Roger MacBean</td>
<td>Parmalat Australia – Consultant</td>
<td>Dairy processing industry knowledge and data management</td>
</tr>
<tr>
<td>Dr Lisa Oakley</td>
<td>New Zealand Food Safety Authority</td>
<td>Risk assessment</td>
</tr>
<tr>
<td>Mr John O'Regan</td>
<td>Murray Goulburn</td>
<td>Dairy processing industry expertise and knowledge</td>
</tr>
<tr>
<td>Mr Steve Rice</td>
<td>Dairy Authority of South Australia</td>
<td>Chief Executive Officer, Dairy Authority of South Australia</td>
</tr>
<tr>
<td>Dr Jenny Robertson</td>
<td>Jenny Robertson Consulting Services</td>
<td>Dairy processing industry expertise and knowledge</td>
</tr>
<tr>
<td>Mr Neil Willman</td>
<td>Consultant</td>
<td>Cheese making</td>
</tr>
</tbody>
</table>