Phospholipase A1 from *Aspergillus niger*

An application to amend the *Australia New Zealand Food Standards Code* with a phospholipase A1 preparation produced by a genetically modified strain of *Aspergillus niger*

Novozymes A/S

December 2020

Regulatory Affairs
EXECUTIVE SUMMARY

The present application seeks to amend Schedule 18—Processing aids of the Australia New Zealand Food Standards Code (the Code) to approve a phospholipase A1 enzyme preparation produced by Novozymes A/S.

Proposed change to Australia New Zealand Food Standards Code – Schedule 18—Processing aids

Schedule 18—Processing aids is proposed to be amended to include a genetically modified strain of *Aspergillus niger* expressing a phospholipase A1 from *Talaromyces leycettanu*s as permitted source for phospholipase A1.

The application is applied for assessment by the general procedure.

Description of enzyme preparation

The enzyme is a phospholipase A1 (EC 3.1.1.32).

Phospholipase A1 catalyses the hydrolysis of the sn-1 ester bond of diacylphospholipids.

The enzyme is produced by submerged fermentation of an *Aspergillus niger* microorganism expressing a phospholipase A1 from *Talaromyces leycettanu*s.

The phospholipase A1 enzyme preparation is available as a liquid preparation complying with the JECFA recommended purity specifications for food-grade enzymes.

The producing microorganism, *Aspergillus niger*, is absent from the commercial enzyme product.

Use of the enzyme

The phospholipase A1 preparation is used as a processing aid during degumming of vegetable oils and fats. Phospholipase A1 hydrolyses ester bonds in phospholipids.

Benefits

The benefits of the action of the phospholipase A1 during degumming of vegetable oils and fats are:

- Robust and simple process
• Cost-efficient process with low water consumption and reduced need for bleaching earth

• Reduced gum fraction and higher total oil yield

• Adequate storage stability and facilitation of further processing of the oil due to efficient removal of impurities such as phosphatides, also called gums

• Higher oil yields due to significantly reduced loss of oils to gums, close to zero formation of soaps and no hydrolysis of the oil

• Cleaner oil products due to efficient removal of impurities that affect the taste, smell and visual appearance of the oil such as gums

Safety evaluation

The safety of the production organism and the enzyme product has been thoroughly assessed:

• The production organism has a long history of safe use as production strain for food-grade enzyme preparations and is known not to produce any toxic metabolites.

• The genetic modifications in the production organism are well-characterised and safe and the recombinant DNA is stably integrated into the production organism and unlikely to pose a safety concern.

• The enzyme preparation complies with international specifications ensuring absence of contamination by toxic substances or noxious microorganisms

• Sequence homology assessment to known allergens and toxins shows that oral intake of the phospholipase A1 does not pose food allergenic or toxic concern.

• Two mutagenicity studies *in vitro* showed no evidence of genotoxic potential of the enzyme preparation.

• An oral feeding study in rats for 13-weeks showed that all dose levels were generally well tolerated and no evidence of toxicity.

Furthermore, the safety of the phospholipase A1 preparation was confirmed by external expert groups, as follows:
• Denmark: The enzyme preparation was safety assessed resulting in the authorisation of the enzyme product by the Danish Veterinary and Food Administration.

• France: The enzyme is included in the French positive list for processing aids, including food enzymes (The French order of October 19, 2006 on use of processing aids in the manufacture of certain foodstuff), as amended.

• Brazil: The enzyme was evaluated, approved and included in the Brazilian positive list – RDC 26/2009.

• Mexico: Based on a dossier submitted by Novozymes, the Mexican food authorities, COFEPRIS, have approved the enzyme.

Conclusion

Based on the Novozymes A/S safety evaluation (confirmed by the above-mentioned bodies), we respectfully request the inclusion of the phospholipase A1 in Schedule 18—Processing aids.
Contents

Executive summary .. 2
Introduction ... 6
CHAPTER 3.1, GENERAL REQUIREMENTS FOR APPLICATIONS ... 7
 A Executive Summary ... 7
 B Applicant details .. 7
 C Purpose of the application ... 8
 D Justification for the application ... 8
 E Information to support the application .. 9
 F Assessment procedure .. 10
 G Confidential commercial information (CCI) .. 10
 H Other confidential information ... 10
 I Exclusive capturable commercial benefit (ECCB) ... 10
 J International and other national standards ... 11
 K Statutory declaration ... 11
 L Checklist .. 11

CHAPTER 3.3, GUIDELINES FOR APPLICATIONS FOR SUBSTANCES ADDED TO FOOD .. 12
 3.3.2 PROCESSING AIDS .. 12
 A Technical information on the processing aid .. 12
 B Information related to the safety of a chemical processing aid 20
 C Information related to the safety of an enzyme processing aid 20
 D Additional information related to the safety of an enzyme processing aid derived from a microorganism ... 23
 E Additional information related to the safety of an enzyme processing aid derived from a genetically-modified microorganism ... 25
 F Information related to the dietary exposure to the processing aid 27

List of references ... 31
List of appendices .. 33
INTRODUCTION

The present dossier describes a phospholipase A1 enzyme preparation produced by submerged fermentation of an *Aspergillus niger* microorganism producing a phospholipase A1 from *Talaromyces leycettanus*.

The enzyme is a phospholipase A1 (EC 3.1.1.32). The enzyme catalyses the hydrolysis of the sn-1 ester bond of diacylphospholipids.

The phospholipase A1 enzyme preparation is intended to be used as a processing aid during degumming of vegetable oils and fats.

The following sections describe in detail the construction of the genetically modified *Aspergillus niger* used as the production organism, the production process, the product specification, the application of the enzyme preparation and finally the safety evaluation of the product including the toxicology program, which has been carried out confirming the safety of the product for its intended use.

The documentation has been elaborated according to the Application Handbook from Food Standards Australia New Zealand as of 1 July 2019, applied as relevant for an enzyme application, i.e. outlining the following section:

- Section 3.1.1 – General requirements
- Section 3.3.2 – Processing aids, subsections A, C, D, E, F

NB! When reading this document it should be noticed that in some reports, the phospholipase A1 enzyme preparation is described by its commercial name, Quara® LowP, or by the internal production batch code PPW40307.
CHAPTER 3.1, GENERAL REQUIREMENTS FOR APPLICATIONS

A Executive Summary

An Executive Summary is provided as a separate copy together with this application.

B Applicant details
C Purpose of the application

This application is submitted to provide for amendment of the Australia New Zealand Food Standards Code, Schedule 18—Processing aids to include a genetically modified strain of *Aspergillus niger* as permitted source for a phospholipase A1.

D Justification for the application

The need for the proposed change

Schedule 18—Processing aids contains a list of permitted enzymes of microbial origin. Schedule 18 contains one phospholipase A1 (EC 3.1.1.32) from an *Aspergillus oryzae*. However, Schedule 18—Processing aids does not contain a phospholipase A1 (EC 3.1.1.32) from *Aspergillus niger* containing the gene for phospholipase A1 from *Talaromyces leycettanus*.

Aspergillus niger is an approved host and production strain for a number of enzymes in Schedule 18—Processing aids, including e.g. enzymes active on lipids, such as lipase, lysophospholipase and phospholipase A2.

The advantages of the proposed change over the status quo

The phospholipase A1 preparation is used as a processing aid during the manufacture of edible vegetable oils and fats products. Phospholipase A1 hydrolysates the ester bond in phosphatidylcholine during degumming of vegetable oils and fats.

The benefits of the action of the phospholipase A1 during degumming of vegetable oils and fats are:

- Robust and simple process
- Cost-efficient process with low water consumption and reduced need for bleaching earth
- Reduced gum fraction and higher total oil yield
- Adequate storage stability and facilitation of further processing of the oil due to efficient removal of impurities such as phosphatides, also called gums
- Higher oil yields due to significantly reduced loss of oils to gums, close to zero formation of soaps and no hydrolysis of the oil
• Cleaner oil products due to efficient removal of impurities that affect the taste, smell and visual appearance of the oil such as gums

The benefits, which are described above, are not exclusively obtainable by means of enzyme treatment but can be achieved without the use of enzymes, or with a reduced use of enzymes, through e.g. modified maybe more expensive or less environmentally friendly production processes or recipe changes.

As a response to international customer interests, registration activities have been done globally, e.g. the phospholipase A1 enzyme preparation has been approved in Denmark, France, Brazil and Mexico for the described applications.

D.1 Regulatory impact information

D.1.1 Costs and benefits of the application

The application is not likely to place costs or regulatory restrictions on industry or consumers. Inclusion of the phospholipase A1 enzyme in Schedule 18—Processing aids will provide the food industry with the opportunity to improve the quality of edible vegetable oils and fats under environmentally friendly and cost efficient production conditions. For the government, the burden is limited to necessary activities for a variation of Schedule 18—Processing aids.

D.1.2 Impact on international trade

The application is not likely to cause impact on international trade.

E Information to support the application

E.1 Data requirements

No public health and safety issues related to the proposed change are foreseen. As outlined in sections 3.3.2 C, D, E, F, the phospholipase A1 is produced by submerged fermentation of a genetically modified *Aspergillus niger* strain.

The safety of the production organism and the enzyme product has been thoroughly assessed:

• The production organism has a long history of safe use as production strain for food-grade enzyme preparations and is known not to produce any toxic metabolites.
• The genetic modifications in the production organism are well-characterised and safe and the recombinant DNA is stably integrated into the production organism and unlikely to pose a safety concern.

• The enzyme preparation complies with international specifications ensuring absence of contamination by toxic substances or noxious microorganisms.

• Sequence homology assessment to known allergens and toxins shows that oral intake of the phospholipase A1 does not pose food allergenic or toxic concern.

• Two mutagenicity studies in vitro showed no evidence of genotoxic potential of the enzyme preparation.

• An oral feeding study in rats for 13-weeks showed that all dose levels were generally well tolerated and no evidence of toxicity.

F Assessment procedure

Because the application is for a new source organism for an existing enzyme in the Code, it is considered appropriate that the assessment procedure is characterised as “General Procedure, Level 1”.

G Confidential commercial information (CCI)

Detailed information on the raw materials used in production of the enzyme preparation and construction and characteristics of the genetically modified production strain are provided in Appendix 4.3 and 6, respectively. Summaries of the information are given in section A.4 and 3.3.2 E. The formal request for treatment of selected parts of Appendix 4.3 and 6 as confidential commercial information (CCI) is included as Appendix 1.1.

H Other confidential information

Apart from the selected parts of Appendix 4.3 and 6 identified as confidential commercial information (CCI), no other information is requested to be treated as confidential.

I Exclusive capturable commercial benefit (ECCB)

This application is not expected to confer an Exclusive Capturable Commercial Benefit.
J International and other national standards

J.1 International Standards

Use of enzymes as processing aids for food production is not restricted by any Codex Alimentarius Commission (Codex) Standards.

J.2 Other national standards or regulations

With few exceptions on national, commodity standards, use of enzymes as processing aids for food production is in general not restricted by standards or regulations in other countries.

K Statutory declaration

The Statutory Declaration is provided as a separate document together with this submission.

L Checklist

This application concerns an enzyme product intended to be used as a processing aid. Therefore, the relevant documentation according to the Application Handbook from Food Standards Australia New Zealand as of 1 July 2019, are the following sections:

- Section 3.1.1 – General requirements
- Section 3.3.2 – Processing aids, subsections A, C, D, E, F

Accordingly, the checklist for General requirements as well as the Processing aids part of the checklist for applications for substances added to food was used and is included as Appendix 1.2 and 1.3.
CHAPTER 3.3, GUIDELINES FOR APPLICATIONS FOR SUBSTANCES ADDED TO FOOD

3.3.2 PROCESSING AIDS

The phospholipase A1 enzyme preparation described in this application is representative of the commercial food enzyme product for which approval is sought.

A Technical information on the processing aid

A.1 Information on the type of processing aid

The phospholipase A1 enzyme preparation belongs to the category of processing aids described in Schedule 18—Processing aids.

The phospholipase A1 enzyme preparation is to be used in the food industry as a processing aid during the degumming of vegetable oils and fats. Phospholipase A1 hydrolyses the ester bond in phospholipids.

The phospholipase A1 enzyme preparation is used in, but not limited to, the following food manufacturing processes:

• Degumming of vegetable oils and fats during which the phospholipase A1 hydrolyses the ester bonds of phospholipids. The use of the enzyme leads to higher and more stable oil and fats.

The recommended dosage of the phospholipase A1 during degumming of vegetable oils and fats is up to 5 PLA(L) per kg oils and fats.

A.2 Information on the identity of the processing aid

A.2.1 Enzyme

Generic name phospholipase A1

IUBMC nomenclature phospholipase A1

IUBMC No. EC 3.1.1.32

Cas No. 9043-29-2
A.2.2 Enzyme preparation

The enzyme concentrate is formulated into a final enzyme preparation. The enzyme concentrate may be intended for a single enzyme preparation or a blend with other food enzymes and formulated as a liquid product depending on the characteristics of the intended food process in which it will be used.

The typical composition of the enzyme concentrate is:

- enzyme solids (TOS1) approx. 1%
- polyols approx. 50%
- sodium benzoate approx. 0.2%
- potassium sorbate approx. 0.1%
- potable water approx. 48.7%

The enzyme concentrate is standardised in phospholipase A1 units to an activity of 75 PLA(L)/g (Appendix 2.1). TheNovozymes A/S method used to determine the PLA(L) activity is enclosed in Appendix 3.1.

Briefly, phospholipase A1 hydrolyses the ester bond between a long fatty acid chain and a reporter molecule. The release of the reporter molecule can be measured by photospectrometry and is directly correlated to the phospholipase A1 activity.

A.2.3 Host organism

The host strain is a modified (protease-deficient) Aspergillus niger strain (BO-1) derived from a natural isolate of Aspergillus niger C40-1. The BO-1 strain lineage has been used by Novozymes A/S for more than 30 years and has given rise to a number of food enzyme production strains, which are used for production of previously evaluated and regulatory approved food enzymes. The taxonomic classification of the strain is as follows:

1 TOS = Total Organic Solids, defined as: 100% - water - ash - diluents
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Trichocomaceae
Genus: Aspergillus
Species: Aspergillus niger

For a more detailed description of the host organism and the genetic modifications, please see section 3.3.2 E.

A.2.4 Donor organism

The donor for the phospholipase A1 gene is *Talaromyces leycettanus*.

For a more detailed description of the donor and the donor gene, please see section 3.3.2 E.

A.3 Information on the chemical and physical properties of the processing aid

The enzyme is a phospholipase A1 (EC 3.1.1.32). Phospholipase A1 catalyses the hydrolysis of the sn-1 ester bond of diacylphospholipids.

The enzyme preparation is available as liquid product.

The food enzyme object of the present dossier is not added to final foodstuffs but used as a processing aid during food manufacturing.

No reaction products, which could not be considered normal constituents of the diet, are formed during the production or storage of the enzyme-treated food.

A.4 Manufacturing process

The manufacturing process is composed of a fermentation process, a purification process, a formulation process and finally a quality control of the finished product, as outlined by Aunstrup et al. (1979). This section describes the processes used in manufacturing of the phospholipase A1 enzyme product.

The enzyme preparation is manufactured in accordance with current Good Manufacturing Practices (Appendix 4.1). The quality management system used in the manufacturing process complies with ISO 9001:2015 (Appendix 4.2).
The raw materials are food-grade quality and have been subjected to appropriate analysis to ensure their conformity with the specifications.

A.4.1 Fermentation

The phospholipase A1 is produced by submerged fed-batch pure culture fermentation of the genetically modified strain of *Aspergillus niger*, described in section 3.3.2 E.

A.4.1.1 Raw materials for fermentation

The production strain is grown in a medium consisting of compounds providing an adequate supply of carbon and nitrogen as well as minerals and vitamins necessary for growth. Furthermore, acids and bases for the adjustment of the pH and processing aids (e.g. antifoaming agents) are used during fermentation. The choice of raw materials used in the fermentation process (the feed, the seed fermenter, the main fermenter and dosing) is given in the confidential parts of Appendix 4.3.

A.4.1.2 Hygienic precautions

All equipment is designed and constructed to prevent contamination by foreign microorganisms.

All valves and connections not in use for the fermentation are sealed by steam at more than 120 °C.

After sterilization a positive pressure of more than 0.2 atmosphere is maintained in the fermentation tank.

The air used for aeration is sterilised by passing through a sterile filter. The inside of each fermentation tank is cleaned between fermentations by means of a high-pressure water jet and inspected after the cleaning procedures have been completed.

A.4.1.3 Preparation of the inoculum

The inoculum flask containing the prepared medium is autoclaved and checked. Only approved flasks are used for inoculation.

The stock culture suspension is injected aseptically into the inoculum flask and spread onto the medium in the flask. Once growth has taken place in the inoculum flask (typically after a few days at 30 °C), the following operations are performed:

- Strain identity and traceability: ampoule number is registered
- Microbial purity: a sample from the inoculum flask is controlled microscopically for absence of microbial contaminants.
When sufficient amount of biomass is obtained and when the microbiological analyses are approved, the inoculum flask can be used for inoculating the seed fermenter.

A.4.1.4 The seed fermentation

The raw materials for the fermentation medium are mixed with water in a mixing tank. The medium is transferred to the seed fermenter and heat sterilised (e.g. 120 °C/60 min).

The seed fermentation tank is inoculated by transferring aseptically a suspension of cells from the inoculum flask.

The seed fermentation is run aerobically (sterile airflow), under agitation. The overpressure is kept above 0.2 atmosphere at all times, to prevent contamination.

Once a sufficient amount of biomass has developed, microbiological analyses are performed to ensure absence of contamination. The seed fermentation can then be transferred to the main fermentation tank.

A.4.1.5 The main fermentation

The raw materials for the medium are mixed with water in a mixing tank. The medium is transferred to the main fermenter and heat sterilised (e.g. 120 °C/60 min). If necessary, the pH is adjusted after sterilization, with sterile pH adjustment solutions.

The fermentation in the main tank is run as normal submerged fed-batch fermentation.

The main fermentation is run aerobically (sterile airflow), under vigorous agitation. The overpressure is kept above 0.2 atmosphere at all times, to prevent contamination. The fermentation is run at a well-defined temperature.

Fresh medium is added aseptically when the pH increases above its set point, and the dissolved oxygen concentration rises. The feed rate is adjusted so that there is no accumulation of carbohydrates.

Other parameters are measured at regular intervals

- refractive index
- enzyme productivity
- residual glucose
- residual ammonia

Samples are also taken at regular intervals to check absence of microbial contamination.
A.4.2 Recovery

The recovery process is a multi-step operation designed to separate the enzyme from the microbial biomass and partially purify, concentrate, and stabilize the food enzyme.

The steps of this process involve a series of typical unit operations:

- pre-treatment
- primary separation
- filtration
- concentration
- evaporation
- preservation and stabilization

A.4.2.1 Raw materials for recovery

The choice of raw materials used during recovery is given in the confidential parts of Appendix 4.3.

A.4.2.2 Pre-treatment

To facilitate the separation, flocculants are used in a pH-controlled process.

A.4.2.3 Primary separation

The cell mass and other solids are separated from the broth by well-established techniques such as pre-coat vacuum drum filtration or centrifugation.

The primary separation is performed at well-defined pH and temperature range.

A.4.2.4 Filtration

For removal of residual cells of the production strain and as a general precaution against microbial degradation, filtration on dedicated germ filtration media is applied. Pre-filtration is included when needed.

The filtrations are performed at well-defined pH and temperature intervals, and result in an enzyme concentrate solution free of the production strain and insoluble substrate components from the fermentation.
A.4.2.5 Concentration

Ultrafiltration and/or evaporation are applied for concentration and further purification. The ultrafiltration is applied to fractionate high molecular weight components (enzymes) from low molecular weight components and is used to increase the activity/dry matter ratio. Evaporation is used to increase the activity while maintaining the activity/dry matter ratio.

The pH and temperature are controlled during the concentration step, which is performed until the desired activity and activity/dry matter ratio has been obtained.

A.4.2.6 Evaporation

Evaporation is performed to remove water and increase the refractive index. The concentration is run at 0-45 °C and the refractive index is controlled during the concentration step to ensure that the dry matter content is within a given range.

A.4.2.7 Preservation and stabilization

For enzymatic, physical and microbial stabilization polyols as well as potassium sorbate and sodium benzoate are added to the enzyme concentrate.

A.4.2.8 Process control

Apart from the process controls performed during the various fermentation steps and described above, the following microbial controls are also performed.

Samples are withdrawn from both the seed fermenter and the main fermenter:

- before inoculation
- at regular interval during cultivation
- before transfer/harvest

The samples during all steps are examined by:

- microscopy
- plating culture broth on a nutrient agar and incubating for 24-48 hours

Growth characteristics are observed macroscopically and microscopically.

During the microbiological control steps, the number of foreign microorganisms should be insignificant. The fermentation parameters, i.e. enzyme activity, temperature and oxygen as well as pH are also monitored closely. A deviation from the normal course of the fermentation may signal a contamination.
If a significant contamination develops, the fermentation is terminated. The fermentation is regarded as “significantly contaminated” if two independent samples show presence of contaminating organisms after growth on nutrient agar.

Any contaminated fermentation is rejected for enzyme preparations to be used in a food-grade application.

A.5 Specification for identity and purity

In addition to this, the phospholipase A1 enzyme product also conforms to the General Specifications for Enzyme Preparations Used in Food Processing as proposed by the Joint FAO/WHO Expert Committee on Food Additives in Compendium of Food Additive Specifications.

Analytical data for an unstandardized, representative batch of the phospholipase A1 enzyme preparation is shown in (Table 1). These data show compliance with the purity criteria of the specification.

Table 1: Analytical data of an unstandardized enzyme product batch

<table>
<thead>
<tr>
<th>Control parameter</th>
<th>Unit</th>
<th>Specification</th>
<th>Batch PPW40307</th>
</tr>
</thead>
<tbody>
<tr>
<td>phospholipase A1 activity</td>
<td>PLA(L)/g</td>
<td></td>
<td>679</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>< 5</td>
<td>ND (LOD < 0.5)</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>< 1</td>
<td>ND (LOD < 0.3)</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>< 1</td>
<td>ND (LOD < 0.05)</td>
</tr>
<tr>
<td>Hg</td>
<td>ppm</td>
<td>< 1</td>
<td>ND (LOD < 0.05)</td>
</tr>
<tr>
<td>Total viable count</td>
<td>CFU/g</td>
<td>< 50,000</td>
<td>100</td>
</tr>
<tr>
<td>Total coliforms</td>
<td>CFU/g</td>
<td>< 30</td>
<td><4</td>
</tr>
<tr>
<td>Enteropathogenic Escherichia coli</td>
<td>CFU/25 g</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>CFU/25 g</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Antimicrobial activity</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Ochratoxin A</td>
<td>ppm</td>
<td>ND (LOD < 0.0003)</td>
<td></td>
</tr>
<tr>
<td>Fumonisin B2</td>
<td>ppm</td>
<td>ND (LOD < 0.0005)</td>
<td></td>
</tr>
<tr>
<td>Production strain</td>
<td>CFU/g</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: not detected; LOD: limit of detection; CFU: colony forming unit

The methods of analysis used to determine compliance with the specifications are enclosed (Appendix 3).

The phospholipase A1 enzyme preparation is available as a liquid enzyme concentrate. The concentrate is standardised in phospholipase A1 units (PLA(L)/g; Appendix 3.1). The preparation does not contain known food allergens (Appendix 2.1).

A.6 Analytical method for detection

The phospholipase A1 enzyme preparation is to be used in the food industry as a processing aid. This information is not required in the case of an enzymatic processing aid.

B Information related to the safety of a chemical processing aid

Not applicable – this application does not concern a chemical processing aid.

C Information related to the safety of an enzyme processing aid

C.1 General information on the use of the enzyme as a food processing aid in other countries

The enzyme is used as processing aid during processing of vegetable oils and fats in a range of countries, where there are no restrictions of the use of enzyme processing aids or where the enzyme is covered by country positive list or specific approval.

The safety of the phospholipase A1 preparation has been evaluated and confirmed by external expert groups, as follows:

- Denmark: The enzyme preparation was safety assessed resulting in the authorisation of the enzyme product by the Danish Veterinary and Food Administration.
• France: The enzyme is included in the French positive list for processing aids, including food enzymes (The French order of October 19, 2006 on use of processing aids in the manufacture of certain foodstuff), as amended.

• Brazil: The enzyme was evaluated, approved and included in the Brazilian positive list – RDC 26/2009.

• Mexico: Based on a dossier submitted by Novozymes, the Mexican food authorities, COFEPRIS, have approved the enzyme.

C.2 Information on the potential toxicity of the enzyme processing aid

(a) Information on the enzyme’s prior history of human consumption and/or its similarity to proteins with a history of safe human consumption

In general, lipases are widely distributed in plants (oats, pineapple, avocado etc.), microbes (bacteria and fungi), animals and humans (pancreas, liver and stomach). They can be divided into four groups according to their specificity: Substrate specific lipases, regioselective lipases, fatty acid specific lipases and stereospecific lipases (van Oort, 2010). The lipases are valued biocatalysts because they act under mild conditions, are generally stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereoselectivity in catalysis (Hasan et al, 2006).

Lipases, including phospholipase, usually function at lipid-air or lipid-water interfaces, and their activity is increased by the presence of organised lipid structures, which are normally found at such interfaces (van Oort, 2010). Phospholipase enzyme preparations from various sources are widely authorised in, e.g. Australia and New Zealand, Brazil, Canada, China, Denmark, France, Japan, Mexico.

(b) Information on any significant similarity between the amino acid sequence of the enzyme and that of known protein toxins

A sequence homology assessment of the phospholipase A1 enzyme to known toxins was conducted. The amino acid sequence of the phospholipase A1 provided in Appendix 6.4 was used as input for the search. No homologies to known toxins were found. The complete search report is enclosed in Appendix 5.1.

Furthermore, safety studies as described below were performed on a representative batch (PPW40307) that was produced according to the description given in section 3.3.2 A.4, omitting stabilization and standardization. A summary of the safety studies is enclosed in Appendix 5.2.

The following studies were performed:
The main conclusions of the safety studies can be summarised as follows:

- Phospholipase A1 PPW40307 did not induce gene mutations in bacteria either in the presence or absence of metabolic activation (S-9) when tested under the conditions employed in this study.

- Phospholipase A1 PPW40307 did not induce micronuclei in cultured human peripheral blood lymphocytes following treatment in the presence or absence of an aroclor induced rat liver metabolic activation system (S-9).

- Oral administration of batch PPW40307 to Sprague-Dawley rats at doses up to 100% of the tox test batch (1356 mg TOS/kg bw/day for 13 weeks was well-tolerated and did not cause any adverse change. The NOAEL was considered to be 100% of the tox test batch (equivalent to 1356 mg TOS/kg bw/day).

Based on the present toxicity data it can be concluded that the phospholipase A1 enzyme preparation, represented by batch PPW40307, exhibits no toxicological effects under the experimental conditions described.

C.3 Information on the potential allergenicity of the enzyme processing aid

(a) Information of the source of the enzyme processing aid

The phospholipase A1 enzyme is produced by an Aspergillus niger microorganism expressing the phospholipase A1 from Talaromyces leycettanus. Aspergillus niger is ubiquitous in the environment and in general considered as a non-pathogenic fungus (see Section 3.3.2 D).

(b) Analysis of similarity between the amino acid sequence of the enzyme and that of known allergens

Enzymes have a long history of safe use in food, with no indication of adverse effects or reactions. Moreover a wide variety of enzyme classes (and structures) are naturally present in food.

The allergenicity potential of enzymes was studied by Bindslev-Jensen et al (2006) and reported in the publication: “Investigation on possible allergenicity of 19 different commercial enzymes used in the food industry”. The investigation comprised enzymes produced by wild-
type and genetically modified strains as well as wild-type enzymes and protein engineered variants and comprised 400 patients with a diagnosed allergy to inhalation allergens, food allergens, bee or wasp. It was concluded from this study that ingestion of food enzymes in general is not likely to be a concern with regard to food allergy.

Additionally, food enzymes are used in small amounts during food processing resulting in very small amounts of the enzyme protein in the final food. A high concentration generally equals a higher risk of sensitization, whereas a low level in the final food equals a lower risk (Goodman et al, 2008).

A sequence homology assessment of the phospholipase A1 enzyme to known allergens was conducted (Appendix 5.1). The amino acid sequence of the phospholipase A1 provided in Appendix 6.4 was used as input for the search. The phospholipase A1 was compared to allergens from the FARRP allergen protein database (http://www.allergenonline.org).

The analyses of the phospholipase A1’s sequence identified no matches above threshold to allergens present in the databases.

On the basis of the available evidence it is concluded that oral intake of the phospholipase A1 is not anticipated to pose any food allergenic concern.

C.4 Safety assessment reports prepared by international agencies or other national government agencies, if available

Documentation of approval of the phospholipase A1 in Denmark, France, Brazil and Mexico is enclosed in Appendix 2.

D Additional information related to the safety of an enzyme processing aid derived from a microorganism

D.1 Information on the source microorganism

The phospholipase A1 enzyme is produced by an Aspergillus niger microorganism expressing the phospholipase A1 from Talaromyces leycettanus. The host strain is a modified (protease-deficient) Aspergillus niger strain (BO-1) derived from a natural isolate of Aspergillus niger C40-1. The BO-1 strain lineage has been used by Novozymes A/S for more than 30 years and has given rise to a number of food enzyme production strains, which are used for production of previously evaluated and regulatory approved food enzymes. The phospholipase A1 production strain is a non-pathogenic, non-toxigenic, genetically modified Aspergillus niger strain. The production strain is marker-free, and it does not produce secondary metabolites of toxicological concern to humans as explained in Section E 1.3, Section A.5 and Appendix 6.1.
D.2 Information on the pathogenicity and toxicity of the source microorganism

Aspergillus niger is ubiquitous in the environment and in general considered as a non-pathogenic fungus.

Aspergillus niger is classified as a group 1 microorganism according to EU Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work. A group 1 microorganism means one that is unlikely to cause human disease.

Aspergillus niger as a species has been used safely for the production of food ingredients (e.g. citric acid) and food enzymes world-wide for decades.

Schuster et al. (2002) reviewed the safety of *Aspergillus niger* and describe it as having a very long history of safe industrial use, being widely distributed in nature, and being commonly used for production of food enzymes and citric acid.

Aspergillus niger has been used in the industry since 1919, for instance for the production of citric acid, which could be an ingredient of foods such as soft drinks, fruit juices and jams. The US Food and Drug Administration (FDA) has listed *Aspergillus niger* as a source of citric acid (21 CFR §173.280).

The JECFA (Joint FAO/WHO Expert Committee on Food Additives) has evaluated enzyme preparations derived from *Aspergillus niger*. This body of experts determined that enzymes from this source do not constitute a toxicological hazard (WHO, 1990).

Carbohydrase, pectinase, protease, glucose oxidase, catalase, lipase and lactase enzyme preparations from *Aspergillus niger* are included in the GRAS petition 3G0016 (filed April 12th, 1973) that FDA on request from the Enzyme Technical Association (ETA) converted into separate GRAS Notices (GRN 89, 111, 132). Based on the information provided by ETA, as well as the information in GRP 3G0016 and other information available to FDA, the agency did not question the conclusion that enzyme preparations from *Aspergillus niger* are GRAS under the intended conditions of use. Analogous conclusions were drawn in GRAS Notices GRN 158, 183, 214, 296, 345, 402, 428, 510, 651, 657, 699, 703, and 739 which all describe food enzymes produced by *Aspergillus niger* strains.

Overall, it can be concluded that *Aspergillus niger* is widely accepted as a non-pathogenic organism and that it has a long history of safe use in food and food enzyme production.

D.3 Information on the genetic stability of the source organism

The inserted recombinant DNA is genetically stable during fermentation, as the inserted DNA is integrated into the chromosome.
Stability of the introduced DNA sequences was analysed using phenotypic characteristics of the production strain, i.e. enzyme activity and protein synthesis.

For a more detailed description of the strain construction and characteristics, please see section 3.3.2 E.

E Additional information related to the safety of an enzyme processing aid derived from a genetically-modified microorganism

E.1 Information on the methods used in the genetic modification of the source organism

This section contains summarised information on the modifications of the host strain, on the content and nature of the introduced DNA and on the construction of the final production strain, as well as the stability of the inserted gene. The detailed information is provided in the confidential Appendix 6.

E.1.1 Host organism

The host strain is a modified (protease-deficient) *Aspergillus niger* strain (BO-1) derived from a natural isolate of *Aspergillus niger* C40-1. The BO-1 strain lineage has been used by Novozymes A/S for more than 30 years and has given rise to a number of food enzyme production strains, which are used for production of previously evaluated and regulatory approved food enzymes. The taxonomic classification of the strain is as follows:

- **Division:** Ascomycota
- **Class:** Eurotiomycetes
- **Order:** Eurotiales
- **Family:** Trichocomaceae
- **Genus:** Aspergillus
- **Species:** *Aspergillus niger*

The classification of *Aspergillus niger* BO-1 was confirmed by Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.

The recipient strain used in the construction of the *Aspergillus niger* production strain, was derived from the parental strain through a combination of classical mutagenesis/selection
and GM-steps. These steps were carried out in order to simplify purification, enhance product stability and increase the safety of the strain.

E.1.2 Introduced DNA

The vector used to transform the *Aspergillus niger* recipient strain is based on the well-known *Escherichia coli* standard vector pUC19. No elements of the vector backbone are left in the production strain. The vector contains the phospholipase A1 expression cassette consisting of a hybrid *Aspergillus* promoter, the coding sequence for phospholipase A1 from *Talaromyces leycettanus* and an *Aspergillus niger* terminator. The phospholipase A1 gene was provided as a synthetic gene. Furthermore, the vector contains an expression cassette to introduce a marker gene for selection of successful transformants during the construction of the production strain.

E.1.3 Construction of the Recombinant Microorganism

The *Aspergillus niger* production strain was constructed from the recipient strain through the following steps:

1. The phospholipase A1 expression cassette was integrated at specific integration sites present in the recipient strain.
2. A transformant was screened for high phospholipase A1 activity leading to the final production strain.

E.1.4 Antibiotic Resistance Gene

No functional antibiotic resistance genes were left in the strain as a result of the genetic modifications as shown by genome sequence analysis.

E.1.5 Stability of the Introduced Genetic Sequences

The transforming DNA is stably integrated into the *Aspergillus niger* chromosome and, as such, is poorly mobilised for genetic transfer to other organisms and is mitotically stable. Stability of the introduced DNA sequence was analysed using phenotypic characteristics of the production strain, i.e. enzyme activity and protein synthesis. Further details can be found in Appendix 6.5.
F Information related to the dietary exposure to the processing aid

F.1 A list of foods or food groups likely to contain the processing aid or its metabolites

The phospholipase A1 preparation is used as a processing aid during the manufacture of vegetable oils and fats products. Phospholipase A1 hydrolyses the ester bond in phosphatidylcholine during degumming of vegetable oils and fats.

F.2 The levels of residues of the processing aid or its metabolites for each food or food group

The phospholipase A1 enzyme preparation is used at minimum levels necessary to achieve the desired effect and according to requirements for normal production following GMP.

The enzyme is used during degumming of vegetable oils and fats.

Use level

The enzyme preparation is used at minimum levels necessary to achieve the desired effect and according to requirements for normal production following GMP.

The conditions of use of the phospholipase A1 preparation during food processing do not only depend on the type of application, but also on the food production process of each individual food manufacturer. In order to ensure optimal effectiveness of the enzyme at an acceptable economic cost the dosage, reaction time, process conditions and processing steps are adjusted.

The highest dosage given for food is 5 PLA(L) per kg oils and fats. This corresponds to 67 mg of phospholipase A1 enzyme preparation per kg oils and fats equivalent to 0.67 mg TOS per kg oils and fats.

Enzyme residues in the Final Food

The phospholipase A1 preparation is used in processing of vegetable oils and fats. The enzyme is denatured by heat during processing and removed by separation of the oil and water phase. The enzyme is water-soluble and will thus remain in the water phase, so that the enzyme TOS is negligible in the processed oil.
F.2.1 Estimates of human consumption

Method used for the dietary exposure assessment

An exposure assessment according to the Budget Method (Hansen, 1966; Douglass et al., 1997; ILSI, 1997) has been performed, as the processed oils and fats are used as an ingredient in a variety of food products.

Budget Method

Overall, the human exposure to the phospholipase A1 will be negligible because the enzyme preparation is used as a processing aid and in low dosages.

The Budget Method assumptions represent a “maximum worst case” situation of human consumption, in which the food enzyme object of the present application would be used at its maximum recommended dosages in all processed food and not only in those food processes described in Section F.2.

It is also supposed that the totality of the food enzyme will end up in the final food. This assumption is exaggerated since the enzyme protein and the other substances resulting from the fermentation are diluted or removed in certain processing steps.

As an example the phospholipase A1 will be removed during repeated water washing steps of the degummed oil. The food enzyme is retained in the water phase and further refining through filtration and purification steps removes any residual total organic solids to a negligible amount. The European Food Safety Authorities came to the same conclusion (EFSA, 2016)

Therefore the safety margin calculation derived from this method is highly conservative.

Assumptions in the Budget Method

Solids

The maximum energy intake over the course of a lifetime is 50 kcal/kg body weight/day.

50 kcal corresponds to 25 g foods.

Therefore, adults ingest 25 g foods per kg body weight per day.

Assuming that 50% of the food is processed food, the daily consumption will be 12.5 g processed foods per kg body weight.

It is further assumed that, in average, all processed food contains 25% oils and fats = 3.12 g oils and fats per kg body weight per day.
Liquids The maximum intake of liquids (other than milk) is 100 ml/kg body weight/day.

Assuming that 25% of the non-milk beverages is processed, the daily consumption will be 25 ml processed beverages per kg body weight.

It is further assumed that all processed beverages contain 12% oils and fats = 3.0 g oils and fats per kg body weight per day.

It is assumed that the densities of the beverages are ~ 1.

TMDI (Total amount of dietary intake) calculation

Solid food

The highest dosage given for food is 5 PLA(L) per kg oils and fats, corresponding to 0.67 mg TOS per kg oils and fats (cf. Section 3.3.2 A.2.2).

Based on this, 3.12 g oils and fats in solid food will maximally contain:

0.67 mg TOS per kg oils and fats / 1000 g per kg x 3.12 g = 0.002 mg TOS

Liquids

The highest dosage given for food is 5 PLA(L) per kg oils and fats, corresponding to 0.67 mg TOS per kg oils and fats (cf. Section 3.3.2 A.2.2).

Based on this, 3.0 g oils and fats in liquids will maximally contain:

0.67 mg TOS per kg oils and fats / 1000 g per kg x 3.0 g = 0.002 mg TOS

Total TMDI of solid foods and liquids containing oils and fats

0.002 mg TOS + 0.002 mg TOS = 0.004 mg TOS

F.2.2. Safety Margin Calculation

The safety margin is calculated as dose level with no adverse effect (NOAEL) divided by the estimated human consumption (TMDI). The NOAEL dose level in the 13 weeks oral toxicity study in rats was concluded to be 1356 mg TOS/kg bw/day (cf. Section 3.3.2 C 2).

The estimated human consumption is 0.004 mg TOS/kg/day

The safety margin can thus be calculated to be 1356/0.004 = 339,000.
F.3 For foods or food groups not currently listed in the most recent Australian or New Zealand National Nutrition Surveys (NNSs), information on the likely level of consumption

Not relevant.

F.4 The percentage of the food group in which the processing aid is likely to be found or the percentage of the market likely to use the processing aid

It is assumed that all vegetable oils and fats are processed using the phospholipase A1 object of this dossier as a processing aid at the highest recommended dosage.

F.5 Information relating to the levels of residues in foods in other countries

As described in F.2.1 above, a "worst case" calculation is made assuming that all organic matter originating from the enzyme is retained in the processed food product. The dietary exposure is estimated using the Budget Method, as the processed oils and fats are used as an ingredient in a variety of food products.

F.6 For foods where consumption has changed in recent years, information on likely current food consumption

No significant changes in recent years are observed.
LIST OF REFERENCES

LIST OF APPENDICES

1. General requirements
2. Product information
3. Methods of analysis used to determine compliance with the specifications
4. Documentation regarding the manufacturing process
5. Safety documentation
6. Documentation regarding the production microorganism